Advertisements
Advertisements
Question
यदि `1/(6!) + 1/(7!) = x/(8!)`, तो x का मान ज्ञात कीजिए।
Solution
`1/(6!) + 1/(7!) = x/(8!)`
⇒ `1/(6!) + 1/(7 xx 6!) = x/(8 xx 7 xx 6!)`
⇒ `1/(6!) (1 + 1/7) = x/(8 xx 7 xx 6!)`
⇒ `1 + 1/7 = x/(8 xx 7)`
⇒ `8/7 = x/(8 xx 7)`
⇒ x = `(8 xx 8 xx 7)/7`
∴ x = 64
APPEARS IN
RELATED QUESTIONS
मान निकालिए:
8!
मान निकालिए:
4! – 3!
क्या 3! + 4! = 7!?
`(8!)/(6! xx 2!)` का परिकलन कीजिए।
1 से 9 तक के अंकों को प्रयोग करके कितनी 3 अंकीय संख्याएँ बनाई जा सकती हैं, यदि किसी भी अंक को दोहराया नहीं गया है?
अंक 1, 2, 3, 4, 6, 7 को प्रयुक्त करने से कितनी 3 अंकीय सम संख्याएँ बनाई जा सकती हैं, यदि कोई भी अंक दोहराया नहीं गया है?
अंक 1, 2, 3, 4, 5 के उपयोग द्वारा कितनी 4 अंकीय संख्याएँ बनाई जा सकती हैं, यदि कोई भी अंक दोहराया नहीं गया है? इनमें से कितनी सम संख्याएँ होंगी?
यदि n – 1P3 : nP4 = 1 : 9 तो n ज्ञात कीजिए।
r ज्ञात कीजिए यदि `""^5P_r = 2^6 P_(r-1)`
r ज्ञात कीजिए यदि `""^5P_r = ""^6P_(r-1)`
EQUATION शब्द के अक्षरों में से प्रत्येक को तथ्यतः केवल एक बार उपयोग करके कितने अर्थपूर्ण या अर्थहीन शब्द बन सकते हैं?
MONDAY शब्द के अक्षरों से कितने अर्थपूर्ण या अर्थहीन शब्द बन सकते हैं, यह मानते हुए कि किसी भी अक्षर की पुनरावृत्ति नहीं की जाती है, यदि एक समय में 4 अक्षर लिए जाते हैं?
PERMUTATIONS शब्द के अक्षरों को कितने तरीकों से व्यवस्थित किया जा सकता है, यदि चयनित शब्द का प्रारंभ P से तथा अंत S से होता है।
PERMUTATIONS शब्द के अक्षरों को कितने तरीकों से व्यवस्थित किया जा सकता है, यदि चयनित शब्द में सभी स्वर एक साथ हैं।
PERMUTATIONS शब्द के अक्षरों को कितने तरीकों से व्यवस्थित किया जा सकता है, यदि चयनित शब्द में P तथा S के मध्य सदैव 4 अक्षर हों?
यदि nC8 = nC2, तो nC2 ज्ञात कीजिए।
MONDAY शब्द के अक्षरों से कितने अर्थपूर्ण या अर्थहीन शब्द बन सकते हैं, यह मानते हुए कि किसी भी अक्षर की पुनरावृत्ति नहीं की जाती है, यदि एक समय में सभी अक्षर लिए जाते हैं?