Advertisements
Advertisements
Question
यदि f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., है तब A = ______
Solution
यदि f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., है तब A = 0.
व्याख्या:
दिया है कि `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ...
R1, R2 और R3 से क्रमश: (1 + x)17, (1 + x)23 और (1 + x)41 उभयनिष्ठ लेना
`(1 + x)^17 * (1 + x)^23 * (1 + x)^41 |(1, (1 + x)^2, (1 x)^6),(1, (1 + x)^6, (1 + x)^11),(1, (1 + x)^2, (1 + x)^6)|`
`(1 + x)^17 * (1 + x)^23 * (1 + x)^41 * 0` ....(R1 और R3 समान हैं)
∴ 0 = A + Bx + Cx2 + …
समान पदों की तुलना करने पर हमें A = 0 प्राप्त होता है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs ((2,4),(-5,-1))`
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((3,-1,-2),(0,0,-1),(3,-5,0))`
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((2,-1,-2),(0,2,-1),(3,-5,0))`
यदि `abs ((x, 2),(18, x)) = abs ((6,2),(18,6))` हो तो x बराबर है:
यदि a ≠ 0 हो तो समीकरण `[(x+a, x, x),(x, x + a, x),(x,x,x+a)] = 0` को हल कीजिए |
`[(x,y,x+y),(y,x+y,x),(x+y,x,y)]` का मान ज्ञात कीजिए।
`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।
यदि Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, का एक मूल x = – 4 हो तो अन्य दो मूलों को ज्ञात कीजिए।
दिखाइए कि यदि सारणिक ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0 है तब sinθ = 0 या `1/2` होगा।
मान निकालिए- `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`
मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`
सिद्ध कीजिए - `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0
सिद्ध कीजिए - `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`
यदि एक समबाहु त्रिभुज के शीर्ष (x1, y1), (x2, y2), (x3, y3) तथा त्रिभुज की भुजाओं की लंबाई ‘a’ है तो सिद्ध कीजिए कि `|(x_1, y_1, 1),(x_2, y_2, 1),(x_3, y_3, 1)|^2 = (3"a"^4)/4`
दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।
यदि A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` तो A–1 ज्ञात कीजिए और दर्शाइए कि A–1 = `("A"^2 - 3"I")/2`.
आव्यूह विधि से समीकरण निकाय 3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2 को हल कीजिए।
यदि a + b + c ≠ 0 और `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` = 0, तो सिद्ध कीजिए कि a = b = c
एक त्रिभुज का क्षेत्रफल 9 वर्ग इकाई है जिसके शीर्ष (-3, 0), (3, 0) और (0, k) हैं तो k का मान होगा।
सारणिक `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` बराबर है।
अंतराल `pi/4 x ≤ pi/4` में सारणिक `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 के विभिन्न वास्तविक मूलों की संख्या है।
यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2` बराबर है।
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = ______.
`("aA")^-1 = 1/"a" "A"^-1` जहाँ a एक वास्तविक संख्या है और A एक वर्ग आव्यूह है।
`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, जहाँ a, b, c, A.P में है।