Advertisements
Advertisements
Question
यदि tan 2A = cot (A -18°), जहाँ 2A एक न्यून कोण है, तो A का मान ज्ञात कीजिए।
Solution
tan 2A = cot (A – 18°)
cot (90° – 2A) = cot (A – 18°)
(∵ cot (90° – θ) = tan θ)
90° – 2A = A – 18°
3A = 108°
A = 36°
APPEARS IN
RELATED QUESTIONS
यदि 3 cot A = 4, तो जाँच कीजिए कि `((1-tan^2 A)/(1+tan^2 A)) = cos^2 A - sin^2 A` है या नहीं।
निम्नलिखित के मान निकालिए:
sin 60° cos 30° + cos 60° sin 30°
निम्नलिखित के मान निकालिए:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
`(2 tan 30°)/(1+tan^2 30°)` = ______.
बताइए कि निम्नलिखित वाक्य सत्य है या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।
θ में वृद्धि होने के साथ cosθ के मान में भी वृद्धि होती है।
बताइए कि निम्नलिखित वाक्य सत्य है या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।
θ के सभी मानों पर sinθ = cos θ
दिखाइए कि tan 48° tan 23° tan 42° tan 67° = 1
दिखाइए कि cos 38° cos 52° − sin 38° sin 52° = 0
यदि tan A = cot B, तो सिद्ध कीजिए की A + B = 90°
∠A के अन्य सभी त्रिकोणमितीय अनुपातों को sec A के पदों में लिखिए।