Advertisements
Advertisements
प्रश्न
24 बल्ब वाले एक डिब्बे में 6 खराब बल्ब हैं। इसमें से एक बल्ब यादृच्छिक रूप से निकाला जाता है। इसकी क्या प्रायिकता है कि यह बल्ब खराब नहीं होगा? यदि चुना हुआ बल्ब खराब है और इसे प्रतिस्थापित नहीं किया जाता है तथा शेष बल्बों में से एक अन्य बल्ब यादृच्छिक रूप से निकाला जाता है, तो इसकी प्रायिकता क्या है कि यह दूसरा बल्ब खराब होगा?
उत्तर
∴ बल्बों की कुल संख्या, n(S) = 24
मान लीजिए E1 = दोषपूर्ण बल्ब चुनने की घटना
= अच्छे बल्बों के चयन की घटना
n(E1) = 18
∴ `P(E_1) = (n(E_1))/(n(S)) = 18/24 = 3/4`
मान लीजिए, चयनित बल्ब ख़राब है और बदला नहीं गया है, तो एक कार्टन में बल्बों की कुल संख्या, n(S) = 23 रहती है।
इनमें 18 अच्छे बल्ब और 5 खराब बल्ब हैं।
∴ P(दूसरा ख़राब बल्ब चुनना) = `5/23`
APPEARS IN
संबंधित प्रश्न
घटना E की प्रायिकता + घटना ‘E नहीं’ की प्रायिकता = _________ है।
जब एक पासे को फेंका जाता है, तो 3 से छोटी एक विषम संख्या आने की प्रायिकता ______ है।
क्या किसी घटना की प्रायोगिक प्रायिकता 1 से अधिक हो सकती है? अपने उत्तर का औचित्य दीजिए।
जैसे-जैसे एक सिक्के के उछालों की संख्या बढ़ती जाती है, चितों की संख्या और पटों की संख्या का अनुपात `1/2` हो जाता है। क्या यह सही है? यदि नहीं, तो इसे सही रूप में लिखिए।
एक कंपनी ने 4000 परिवारों को यादृच्छिक रूप से चुना तथा उनके आय स्तर और घर में स्थित टी.वी. सेटों की संख्या में संबंध ज्ञात करने हेतु एक सर्वेक्षण किया। इस प्रकार प्राप्त सूचनाओं को निम्नलिखित सारणी के रूप में सूचीबद्ध किया गया है :
मासिक आय (रू में) |
टी.वी. सेटों/परिवारों की संख्या | |||
0 | 1 | 2 | 2 से अधिक | |
< 10000 | 20 | 80 | 10 | 0 |
10000 – 14999 | 10 | 240 | 60 | 0 |
15000 – 19999 | 0 | 380 | 120 | 30 |
20000 – 24999 | 0 | 520 | 370 | 80 |
25000 और उससे अधिक | 0 | 1100 | 760 | 220 |
निम्नलिखित की प्रायिकता ज्ञात कीजिए -
- एक परिवार की आय 10000 रु – 14999 रु होने और घर में ठीक एक टी.वी. सेट होना
- एक परिवार की आय 25000 रु और उससे अधिक होना और घर में दो टी.वी. सेट होना।
- एक परिवार में एक भी टी.वी. सेट नहीं होना।
दो पासों को एक साथ 500 बार फेंका जाता है। प्रत्येक बार उनके ऊपर आई संख्याओं के योग को ज्ञात करके नीचे दी गई सारणी के अनुसार रिकार्ड किया गया है :
योग | बारंबारता |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
यदि इन पासों को एक बार पुनः फेंका जाए तो निम्नलिखित योग ज्ञात करने की क्या प्रायकिता है?
- 3
- 10 से अधिक
- 5 से कम या उसके बराबर
- 8 और 12 के बीच
दो पासों को एक साथ 500 बार फेंका जाता है। प्रत्येक बार उनके ऊपर आई संख्याओं के योग को ज्ञात करके नीचे दी गई सारणी के अनुसार रिकार्ड किया गया है :
योग | बारंबारता |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
यदि इन पासों को एक बार पुनः फेंका जाए तो निम्नलिखित योग ज्ञात करने की क्या प्रायकिता है?
5 से कम या उसके बराबर
पैक किए गए प्रत्येक डिब्बे में बल्बों की संख्या 40 है। इनमें से 700 डिब्बों के खराब बल्बों की संख्या ज्ञात करने के लिए जाँच की गई तथा इसके परिणाम निम्नलिखित सारणी में दिए गए हैं :
खराब बल्बों की संख्या | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 से अधिक |
बारंबारता | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
इन डिब्बों में से एक डिब्बा यादृच्छिक रूप से चुना जाता है। इसकी क्या प्रायिकता है कि इस डिब्बे में
- कोई बल्ब खराब नहीं होगा?
- खराब बल्बों की संख्या 2 से 6 तक होगी?
- 4 से कम खराब बल्ब होंगे?
पैक किए गए प्रत्येक डिब्बे में बल्बों की संख्या 40 है। इनमें से 700 डिब्बों के खराब बल्बों की संख्या ज्ञात करने के लिए जाँच की गई तथा इसके परिणाम निम्नलिखित सारणी में दिए गए हैं :
खराब बल्बों की संख्या | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 से अधिक |
बारंबारता | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
इन डिब्बों में से एक डिब्बा यादृच्छिक रूप से चुना जाता है। इसकी क्या प्रायिकता है कि इस डिब्बे में खराब बल्बों की संख्या 2 से 6 तक होगी?
पैक किए गए प्रत्येक डिब्बे में बल्बों की संख्या 40 है। इनमें से 700 डिब्बों के खराब बल्बों की संख्या ज्ञात करने के लिए जाँच की गई तथा इसके परिणाम निम्नलिखित सारणी में दिए गए हैं :
खराब बल्बों की संख्या | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 से अधिक |
बारंबारता | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
इन डिब्बों में से एक डिब्बा यादृच्छिक रूप से चुना जाता है। इसकी क्या प्रायिकता है कि इस डिब्बे में 4 से कम खराब बल्ब होंगे?