हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Capacitor is Formed by Two Square Metal-plates of Edge A, Separated by a Distance D. Dielectrics of Dielectric Constant K1 and K2 Are Filled in the Gap as Shown in Figure . Find the Capacitance. - Physics

Advertisements
Advertisements

प्रश्न

A capacitor is formed by two square metal-plates of edge a, separated by a distance d. Dielectrics of dielectric constant K1 and K2 are filled in the gap as shown in figure . Find the capacitance.

योग

उत्तर

Let us consider an elemental capacitor of width dx at a distance x from the left end of the capacitor. It has two capacitive elements of dielectric constants K1 and K2 with plate separations (x tan θ) and (d − x tan θ) in series, respectively. The areas of the plates of the capacitors are adx.

The capacitances of the capacitive elements of the elemental capacitor are : 

`dC_1 = (∈_0K_2(adx))/(x tan θ) , dC_2 = (∈_0K_1(adx))/(d - x tan θ)`

The net capacitance of the elemental capacitor is given by

`1/(dC)= 1/(dC_1) + 1/(dC_2)`

`1/(dC) = (x tanθ)/(∈_0K_2(adx)) + (d-x tanθ)/(∈_0K_1(adx))`

`⇒ dC = (∈_0K_1K_2(adx))/(K_1 x tanθ + K_2(d-x tanθ)`

Thus, integrating the above expression to calculate the net capacitance 

`C = ∫_0^a dC = ∫_0^a (∈_0K_1K_2adx)/(K_1x tanθ+ K_2(d-x tanθ)`

`⇒ C = ∈_0K_1K_2a ∫_0^a (dx)/(K_2d + x tanθ(K_1 - K_2)`

`⇒ C = (∈_0K_1K_2a)/(tanθ(K_1 - K_2))[log_e[K_2d + x tanθ(K_1 - K_2) ]]_0^a`

`⇒ C = (∈_0K_1K_2a)/(tan θ(K_1 - K_2)) [ log_e[K_2d + a tan θ(K_1 - K_2)] - log_e K_2d]`

As we know that `tan  θ = d/a` substituting in the expression for capacitance C.
Now,

`⇒ C = (∈_0K_1K_2a)/(d/a xx (K_1 - K_2) )[ log_e[K_2d + a xx d/a(K_1 - K_2)] - log_e K_2d]`

`⇒ C = (∈_0K_1K_2a)/(d/a xx (K_1 - K_2) )[ log_e K_1d - log_e K_2d ]`

`⇒ C = (∈_0K_1K_2a^2)/(d(K_1 - K_2)) [log_e (K_1/K_2)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Capacitors - Exercises [पृष्ठ १६९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 9 Capacitors
Exercises | Q 57 | पृष्ठ १६९

संबंधित प्रश्न

A capacitor of unknown capacitance is connected across a battery of V volts. The charge stored in it is 300 μC. When potential across the capacitor is reduced by 100 V, the charge stored in it becomes 100 μC. Calculate The potential V and the unknown capacitance. What will be the charge stored in the capacitor if the voltage applied had increased by 100 V?


Three identical capacitors C1, C2 and C3 of capacitance 6 μF each are connected to a 12 V battery as shown.

Find

(i) charge on each capacitor

(ii) equivalent capacitance of the network

(iii) energy stored in the network of capacitors


The equivalent capacitance of the combination shown in the figure is _________ .


Find the charges on the three capacitors connected to a battery as shown in figure.

Take `C_1 = 2.0  uF , C_2 = 4.0  uF , C_3 = 6.0  uF and V` = 12 volts.


Find the charge appearing on each of the three capacitors shown in figure .


Find the charge supplied by the battery in the arrangement shown in figure.


Each capacitor shown in figure has a capacitance of 5⋅0 µF. The emf of the battery is 50 V. How much charge will flow through AB if the switch S is closed?


Find the capacitance of the combination shown in figure between A and B.


A parallel-plate capacitor of plate area A and plate separation d is charged to a potential difference V and then the battery is disconnected. A slab of dielectric constant K is then inserted between the plates of the capacitor so as to fill the space between the plates. Find the work done on the system in the process of inserting the slab.


Consider an assembly of three conducting concentric spherical shell of radii a, b and c as shown in figure Find the capacitance of the assembly between the points Aand B.


An air-filled parallel-plate capacitor is to be constructed which can store 12 µC of charge when operated at 1200 V. What can be the minimum plate area of the capacitor? The dielectric strength of air is `3 xx 10^6  "Vm"^-1`


Three capacitors C1 = 3μF, C2 = 6μF, and C3 = 10μF are connected to a 50 V battery as  shown in Figure  below:

Calculate:
(i) The equivalent capacitance of the circuit between points A and B.
(ii) The charge on C1.


Derive the expression for resultant capacitance, when the capacitor is connected in parallel.


Capacitors P and Q have identical cross-sectional areas A and separation d. The space between the capacitors is filled with a dielectric of dielectric constant Er as shown in the figure. Calculate the capacitance of capacitors P and Q.


Can the potential function have a maximum or minimum in free space?


A leaky parallel plate capacitor is filled completely with a material having dielectric constant K = 5 and electric conductivity σ = 7.4 × 10-12 Ω-1 m-1. If the charge on the plate at the instant t = 0 is q = 8.85 µC, then the leakage current at the instant t = 12 s is ______ × 10-1 µA.


A capacitor of capacity 2 µF is charged to a potential difference of 12 V. It is then connected across an inductor of inductance 0.6 mH. The current in the circuit at a time when the potential difference across the capacitor is 6.0 V is ______ × 10-1A.


Current versus time and voltage versus time graphs of a circuit element are shown in figure.

The type of the circuit element is ______.


A capacitor with capacitance 5µF is charged to 5 µC. If the plates are pulled apart to reduce the capacitance to 2 µF, how much work is done?


A parallel plate capacitor (A) of capacitance C is charged by a battery to voltage V. The battery is disconnected and an uncharged capacitor (B) of capacitance 2C is connected across A. Find the ratio of final charges on A and B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×