Advertisements
Advertisements
प्रश्न
A conical tent is to accommodate 77 persons. Each person must have 16 m3 of air to breathe. Given the radius of the tent as 7 m, find the height of the tent and also its curved surface area.
उत्तर
According to the condition in the question,
`77 xx 16 = 1/3 pir^2h`
`=> 77 xx 16 = 1/3 xx 22/7 xx 7 xx 7 xx h`
`=> h = (77 xx 16 xx 3 xx 7)/(22 xx 7 xx 7)`
`=> h = (11 xx 16 xx 3)/22`
`=>` h = 24 m
We know that,
l2 = r2 + h2
`=>` l2 = (7)2 + (24)2
`=>` l2 = 49 + 576
`=>` l2 = 625
`=>` l = 25 m
∴ Curved Surface Area = πrl
= `22/7 xx 7 xx 25`
= 550 m2
Therefore the height of the tent is 24 m and it curved surface area is 550 m2.
APPEARS IN
संबंधित प्रश्न
Find the surface area of a sphere of radius 10.5 cm.
`["Assume "pi=22/7]`
Find the surface area of a sphere of diameter 3.5 m.
`["Assume "pi=22/7]`
A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin-plating it on the inside at the rate of ₹ 16 per 100 cm2.
`["Assume "pi=22/7]`
The diameter of the moon is approximately one-fourth of the diameter of the earth. Find the ratio of their surface area.
A right circular cylinder just encloses a sphere of radius r (see figure). Find
- surface area of the sphere,
- curved surface area of the cylinder,
- ratio of the areas obtained in (i) and (ii).
On a map drawn to a scale of 1: 50,000, a rectangular plot of land ABCD has the following dimensions. AB = 6 cm; BC = 8 cm and all angles are right angles. Find:
1) the actual length of the diagonal distance AC of the plot in km.
2) the actual area of the plot in sq. km.
Two solid spheres of radii 2 cm and 4 cm are melted and recast into a cone of height 8 cm. Find the radius of the cone so formed.
Find the surface area of a sphere of radius 10.5 cm .
The surface area of a sphere is 5544 `cm^2`, find its diameter.
Eight metallic spheres; each of radius 2 mm, are melted and cast into a single sphere. Calculate the radius of the new sphere.
A hollow sphere of internal and external diameter 4 cm and 8 cm respectively is melted into a cone of base diameter 8 cm. Find the height of the cone.
Spherical marbles of diameter 1.4 cm are dropped into beaker containing some water and are fully submerged. The diameter of the beaker is 7 cm. Find how many marbles have been dropped in it if the water rises by 5.6 cm.
The diameter of a sphere is 6 cm. It is melted and drawn into a wire of diameter 0.2 cm. Find the length of the wire.
Determine the ratio of the volume of a cube to that of a sphere which will exactly fit inside the cube.
If a sphere is inscribed in a cube, find the ratio of the volume of cube to the volume of the sphere.
If the ratio of volumes of two spheres is 1 : 8, then the ratio of their surface areas is
Find the radius of a sphere whose surface area is equal to the area of the circle of diameter 2.8 cm
A sphere has the same curved surface area as the curved surface area of a cone of height 36 cm and base radius 15 cm . Find the radius of the sphere .
The volume of a sphere is 905 1/7 cm3, find its diameter.
The radius of two spheres are in the ratio of 1 : 3. Find the ratio between their volume.