Advertisements
Advertisements
प्रश्न
A glass flask has a volume 1 × 10−4 m3. It is filled with a liquid at 30°C. If the temperature of the system is raised to 100°C, how much of the liquid will overflow? (Coefficient of volume expansion of glass is 1.2 × 10−5 (°C)−1 while that of the liquid is 75 × 10−5 (°C)−1).
उत्तर
Given: V1 = 1 × 10−4 m3 = 10−4 m3, T1 = 30°C, T2 = 100°C, γglass = 1.2 × 10−5 , `γ_"liquid"` = 75 × 10−5
To find: Volume of liquid that overflows
Formula: `gamma = (V_2 - V_1)/(V_1(T_2 - T_1))`
Calculation: From formula,
Increase in volume = V2 − V1 = γ = V1(T2 − T1)
Increase in volume of glass
= γglass = V1(T2 − T1)
= 1.2 × 10−5 × 10−4 × (100 − 30)
= 1.2 × 70 × 10−9
= 8.4 × 10−8 m3
∴ Increase in volume of glass = 8.4 × 10−8 m3
Increase in volume of liquid -
= `γ_"liquid"`= V1(T2 − T1)
= 75 × 10−5 × 10-4 × (100 − 30)
= 75 × 70 × 10−9
= 5250 × 10−9 m3
∴ Increase in volume of liquid = 5250 × 10−9 m3
∴ Volume of liquid which overflows
= (5250 − 84) × 10−9 m3
= 5166 × 10−9 m3
= 0.5166 × 10−8 m3
∴ Volume of liquid that overflows is 0.5166 × 10−8 m3
APPEARS IN
संबंधित प्रश्न
A steel tape 1m long is correctly calibrated for a temperature of 27.0 °C. The length of a steel rod measured by this tape is found to be 63.0 cm on a hot day when the temperature is 45.0 °C. What is the actual length of the steel rod on that day? What is the length of the same steel rod on a day when the temperature is 27.0 °C? Coefficient of linear expansion of steel = 1.20 × 10–5 K–1
A hole is drilled in a copper sheet. The diameter of the hole is 4.24 cm at 27.0 °C. What is the change in the diameter of the hole when the sheet is heated to 227 °C? Coefficient of linear expansion of copper = 1.70 × 10–5 K–1.
If mercury and glass had equal coefficients of volume expansion, could we make a mercury thermometer in a glass tube?
The density of water at 0°C is 0.998 g cm–3 and at 4°C is 1.000 g cm–1. Calculate the average coefficient of volume expansion of water in the temperature range of 0 to 4°C.
Show that the moment of inertia of a solid body of any shape changes with temperature as I = I0 (1 + 2αθ), where I0 is the moment of inertia at 0°C and α is the coefficient of linear expansion of the solid.
Answer the following question.
What is thermal stress?
A metal rod of Young's moduls 'Y' and coefficient of linear expansion 'a' has its temeprature raised by 'Δ θ'. The linear stress to prevent the expansion of rod is ______.
(L and l is original length of rod and expansion respectively)
A metal rod of length Land cross-sectional area A is heated through T °C. What is the force required to prevent the expansion of the rod lengthwise?
(Y = Young's modulus of material of the rod, α = coefficient of linear expansion of the rod.)
A bimetallic strip is made of aluminium and steel (αAl > αsteel) . On heating, the strip will ______.
A uniform metallic rod rotates about its perpendicular bisector with constant angular speed. If it is heated uniformly to raise its temperature slightly ______.
An aluminium sphere is dipped into water. Which of the following is true?
As the temperature is increased, the time period of a pendulum ______.
The radius of a metal sphere at room temperature T is R, and the coefficient of linear expansion of the metal is α. The sphere is heated a little by a temperature ∆T so that its new temperature is T + ∆T. The increase in the volume of the sphere is approximately ______.
A student records the initial length l, change in temperature ∆T and change in length ∆l of a rod as follows:
S.No. | l(m) | ∆T (C) | ∆l (m) |
1. | 2 | 10 | `4 xx 10^-4` |
2. | 1 | 10 | `4 xx 10^-4` |
3. | 2 | 20 | `2 xx 10^-4` |
4. | 3 | 10 | `6 xx 10^-4` |
If the first observation is correct, what can you say about observations 2, 3 and 4.
Find out the increase in moment of inertia I of a uniform rod (coefficient of linear expansion α) about its perpendicular bisector when its temperature is slightly increased by ∆T.
Calculate the stress developed inside a tooth cavity filled with copper when hot tea at temperature of 57°C is drunk. You can take body (tooth) temperature to be 37°C and α = 1.7 × 10–5/°C, bulk modulus for copper = 140 × 109 N/m2.
If the length of a cylinder on heating increases by 2%, the area of its base will increase by ______.
An anisotropic material has coefficient of linear thermal expansion α1, α2 and α3 along x, y and z-axis respectively. Coefficient of cubical expansion of its material will be equal to ______.
Length of steel rod so that it is 5 cm longer than the copper rod at all temperatures should be ______ cm.
(α for copper = 1.7 × 10-5/°C and α for steel = 1.1 × 10-5/°C)
If the temperature of the sun were to increase from T to 2T and its radius from R to 2R, then the ratio of the radiant energy received on earth to what it was previously will be ______.
A solid metallic cube having a total surface area of 24 m2 is uniformly heated. If its temperature is increased by 10°C, calculate the increase in the volume of the cube.
(Given: α = 5.0 × 10-4°C-1)
A glass flask is filled up to a mark with 50 cc of mercury at 18°C. If the flask and contents are heated to 38°C, how much mercury will be above the mark? (α for glass is 9 × 10-6/°C and coefficient of real expansion of mercury is 180 × 10-6/°C)
A clock with an iron pendulum keeps the correct time at 15°C. If the room temperature is 20°C, the error in seconds per day will be near ______.
(coefficient of linear expansion of iron is 1.2 × 10-5/°C)
A metal rod Y = 2 × 1012 dyne cm-2 of coefficient of linear expansion 1.6 × 10-5 per °C has its temperature raised by 20°C. The linear compressive stress to prevent the expansion of the rod is ______.