हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएसएसएलसी (अंग्रेजी माध्यम) कक्षा १०

A man whose eye-level is 2 m above the ground wishes to find the height of a tree. He places a mirror horizontally on the ground 20 m from the tree and finds that if he stands at a point C which is - Mathematics

Advertisements
Advertisements

प्रश्न

A man whose eye-level is 2 m above the ground wishes to find the height of a tree. He places a mirror horizontally on the ground 20 m from the tree and finds that if he stands at a point C which is 4 m from the mirror B, he can see the reflection of the top of the tree. How height is the tree?

योग

उत्तर

Let the height of the tree AD be “h”.

In ∆ACD and ∆BCF,

∠A = ∠B = 90°

∠C is common

∆ACD ~ ∆BCF by AA similarity

`"AD"/"BF" = "AC"/"BC"`

`"h"/x = 24/2` = 6

h = 6x  ...(1)

In ∆ACE and ∆ABF,

∠C = ∠B = 90°

∠A is common

∴ ∆ACE ~ ∆ABF

`"CE"/"BF" = "AC"/"AB"`

`2/x = 24/20`

24x = 20 × 2

x = `(20 xx 2)/24 = (5 xx 2)/6 = 10/6`

x = `5/3`

Substitute the value of x in (1)

h = `6 xx 5/3` = 10 m

∴ Height of the tree is 10 m

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Geometry - Unit Exercise – 4 [पृष्ठ २०१]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
अध्याय 4 Geometry
Unit Exercise – 4 | Q 7 | पृष्ठ २०१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×