हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Mixture Contains 1 Mole of Helium (Cp = 2.5 R, Cv = 1.5 R) and 1 Mole of Hydrogen (Cp = 3.5 R, Cv = 2.5 R). Calculate the Values of Cp, Cv and γ for the Mixture. - Physics

Advertisements
Advertisements

प्रश्न

A mixture  contains 1 mole of helium (Cp = 2.5 R, Cv = 1.5 R) and 1 mole of hydrogen (Cp= 3.5 R, Cv = 2.5 R). Calculate the values of Cp, Cv and γ for the mixture.

संक्षेप में उत्तर

उत्तर

Specific heat at constant pressure of helium, Cp' = 2.5 R
Specific heat at constant pressure of hydrogen, Cp" = 3.5 R
Specific heat at constant volume of helium, Cv' = 1.5 R
Specific heat at constant volume of hydrogen, Cv" = 2.5 R

n1 = n2 = 1 mol

dU = nCvdT

For the mixture of two gases,

dU1 +dU2 = 1 mol

[n1 + n2] CvdT = n1C'vdT + n2C"vdT,

where Cv  is the heat capacity of the mixture

`=> "C"_"v" =("n"_1"C"'_"v" + "n"_2"C"''_"v")/("n"_1+"n"_2)`

`= (1.5"R" +2.5"R")/2 =2"R"`

Cp = Cv + R = 2R + R = 3R

`gamma  = "C"_"p"/"C"_"v" = (3"R")/(2"R") = 1.5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Specific Heat Capacities of Gases - Exercises [पृष्ठ ७८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 5 Specific Heat Capacities of Gases
Exercises | Q 12 | पृष्ठ ७८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A metre long narrow bore held horizontally (and closed at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of air. What happens if the tube is held vertically with the open end at the bottom?


Given below are densities of some solids and liquids. Give rough estimates of the size of their atoms:

Substance Atomic Mass (u) Density (10Kg m-3)
Carbon (diamond) 12.01 2.22
Gold 197.00 19.32
Nitrogen (liquid) 14.01 1.00
Lithium 6.94 0.53
Fluorine (liquid) 19.00 1.14

[Hint: Assume the atoms to be ‘tightly packed’ in a solid or liquid phase, and use the known value of Avogadro’s number. You should, however, not take the actual numbers you obtain for various atomic sizes too literally. Because of the crudeness of the tight packing approximation, the results only indicate that atomic sizes are in the range of a few Å].


The specific heat capacity of water is 


Can we define specific heat capacity at constant temperature?


Can we define specific heat capacity for an adiabatic process?


Does a solid also have two kinds of molar heat capacities Cp and Cv? If yes, is Cp > Cv? Or is Cp − Cv = R?


Can a process on an ideal gas be both adiabatic and isothermal?


Show that the slope of the p−V diagram is greater for an adiabatic process compared to an isothermal process.


In an isothermal process on an ideal gas, the pressure increases by 0.5%. The volume decreases by about


Two samples A and B are initially kept in the same state. Sample A is expanded through an adiabatic process and the sample B through an isothermal process. The final volumes of the samples are the same. The final pressures in A and B are pA and pBrespectively.


Let ∆Wa and ∆Wb be the work done by the systems A and B, respectively, in the previous question.


5 g of a gas is contained in a rigid container and is heated from 15°C to 25°C. Specific heat capacity of the gas at constant volume is 0.172 cal g−1 °C−1 and the mechanical equivalent of heat is 4.2 J cal−1. Calculate the change in the internal energy of the gas


Air (γ = 1.4) is pumped at 2 atm pressure in a motor tyre at 20°C. If the tyre suddenly bursts, what would be the temperature of the air coming out of the tyre? Neglect any mixing with the atmospheric air.


The figure shows two vessels with adiabatic walls, one containing 0.1 g of helium (γ = 1.67, M = 4 g mol−1)  and the other containing some amount of hydrogen (γ = 1.4, M = 2 g mol−1). Initially, the temperatures of the two gases are equal. The gases are electrically heated for some time during which equal amounts of heat are given to the two gases. It is found that the temperatures rise through the same amount in the two vessels. Calculate the mass of hydrogen.


4.0 g of helium occupies 22400 cm3 at STP. The specific heat capacity of helium at constant pressure is 5.0 cal K−1 mol−1. Calculate the speed of sound in helium at STP.


An engine takes in 5 moles of air at 20°C and 1 atm, and compresses it adiabatically to `1/10^"th"` of the original volume. Assuming air to be a diatomic ideal gas made up of rigid molecules, the change in its internal energy during this process comes out to be X kJ. The value of X to the nearest integer is ______.


If at same temperature and pressure, the densities for two diatomic gases are respectively d1 and d2 then the ratio of velocities of sound in these gases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×