हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Two Ideal Gases Have the Same Value of Cp / Cv = γ. What Will Be the Value of this Ratio for a Mixture of the Two Gases in the Ratio 1 : 2? - Physics

Advertisements
Advertisements

प्रश्न

Two ideal gases have the same value of Cp / Cv = γ. What will be the value of this ratio for a mixture of the two gases in the ratio 1 : 2?

संक्षेप में उत्तर

उत्तर

For the first ideal gas,
Cp1 = specific heat at constant pressure
Cv1 = specific heat at constant volume
n1 = number of moles of the gas

`"C"_("p"1)/"C"_("v"1) = gamma and "C"_("p"1) -"C"_("v"1) = "R"`

`=> gamma "C"_("v"1) - "C"_("v"1) ="R"`

`=> "C"_("v"1)(gamma-1) ="R"`

`=> "C"_("v"1) = "R"/(gamma -1)`

`"C"_("p"1) = gamma "R"/((gamma-1))`

For the second ideal gas,
Cp2 = specific heat at constant pressure
Cv2 = specific heat at constant volume
  n2 = number of moles of the gas

`"C"_("p"2)/"C"_("v"2) = gamma and "C"_("p"2) -"C"_("v"2) = "R"`

`=> gamma "C"_("v"2) - "C"_("v"2) ="R"`

`=> "C"_("v"2)(gamma-1) ="R"`

`=> "C"_("v"2) = "R"/(gamma -1)`

`"C"_("p"2) = gamma "R"/((gamma-1))`

Given:
n1 = n2 = 1 : 2
dU1 = nCv1dt
dU2= 2nCv2dT

When the gases are mixed,
nCv1dT + 2nCv2dT = 3nCvdT

`"C"_"v" = ("C"_("v"1) +2"C"_("v"2))/3`

`= (" R"/(gamma-1) +(2"R")/(gamma-1))/3`

`= (3"R")/((gamma-1)3) = "R"/(gamma-1)`

Hence, Cp / Cv in the mixture is γ.

shaalaa.com
Interpretation of Temperature in Kinetic Theory - Introduction of Kinetic Theory of an Ideal Gas
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Specific Heat Capacities of Gases - Exercises [पृष्ठ ७८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 5 Specific Heat Capacities of Gases
Exercises | Q 11 | पृष्ठ ७८

संबंधित प्रश्न

The energy of a given sample of an ideal gas depends only on its


Keeping the number of moles, volume and temperature the same, which of the following are the same for all ideal gases?


The average momentum of a molecule in a sample of an ideal gas depends on


A sample of 0.177 g of an ideal gas occupies 1000 cm3 at STP. Calculate the rms speed of the gas molecules.


Let Q and W denote the amount of heat given to an ideal gas and the work done by it in an adiabatic process.
(a) Q = 0
(b) W = 0
(c) Q = W
(d) Q ≠ W


A rigid container of negligible heat capacity contains one mole of an ideal gas. The temperature of the gas increases by 1° C if 3.0 cal of heat is added to it. The gas may be
(a) helium
(b) argon
(c) oxygen
(d) carbon dioxide


The figure shows a cylindrical container containing oxygen (γ = 1.4) and closed by a 50-kg frictionless piston. The area of cross-section is 100 cm2, atmospheric pressure is 100 kPa and g is 10 m s−2. The cylinder is slowly heated for some time. Find the amount of heat supplied to the gas if the piston moves out through a distance of 20 cm.


The ratio of the molar heat capacities of an ideal gas is Cp/Cv = 7/6. Calculate the change in internal energy of 1.0 mole of the gas when its temperature is raised by 50 K (a) keeping the pressure constant (b) keeping the volume constant and (c) adiaba


An ideal gas is taken through a process in which the pressure and the volume are changed according to the equation p = kV. Show that the molar heat capacity of the gas for the process is given by `"C" ="C"_"v" +"R"/2.`


An ideal gas (Cp / Cv = γ) is taken through a process in which the pressure and the volume vary as p = aVb. Find the value of b for which the specific heat capacity in the process is zero.


The volume of an ideal gas (γ = 1.5) is changed adiabatically from 4.00 litres to 3.00 litres. Find the ratio of (a) the final pressure to the initial pressure and (b) the final temperature to the initial temperature.


Two samples A and B, of the same gas have equal volumes and pressures. The gas in sample A is expanded isothermally to double its volume and the gas in B is expanded adiabatically to double its volume. If the work done by the gas is the same for the two cases, show that γ satisfies the equation 1 − 21−γ = (γ − 1) ln2.


1 litre of an ideal gas (γ = 1.5) at 300 K is suddenly compressed to half its original volume. (a) Find the ratio of the final pressure to the initial pressure. (b) If the original pressure is 100 kPa, find the work done by the gas in the process. (c) What is the change in internal energy? (d) What is the final temperature? (e) The gas is now cooled to 300 K keeping its pressure constant. Calculate the work done during the process. (f) The gas is now expanded isothermally to achieve its original volume of 1 litre. Calculate the work done by the gas. (g) Calculate the total work done in the cycle.


Figure shows a cylindrical tube with adiabatic walls and fitted with an adiabatic separator. The separator can be slid into the tube by an external mechanism. An ideal gas (γ = 1.5) is injected in the two sides at equal pressures and temperatures. The separator remains in equilibrium at the middle. It is now slid to a position where it divides the tube in the ratio 1 : 3. Find the ratio of the temperatures in the two parts of the vessel.


An ideal gas of density 1.7 × 10−3 g cm−3 at a pressure of 1.5 × 105 Pa is filled in a Kundt's tube. When the gas is resonated at a frequency of 3.0 kHz, nodes are formed at a separation of 6.0 cm. Calculate the molar heat capacities Cp and Cv of the gas.


A cubic vessel (with faces horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of 500 ms–1 in vertical direction. The pressure of the gas inside the vessel as observed by us on the ground ______.


In a diatomic molecule, the rotational energy at a given temperature ______.

  1. obeys Maxwell’s distribution.
  2. have the same value for all molecules.
  3. equals the translational kinetic energy for each molecule.
  4. is (2/3)rd the translational kinetic energy for each molecule.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×