हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

The Volume of an Ideal Gas (γ = 1.5) is Changed Adiabatically from 4.00 Litres to 3.00 Litres. - Physics

Advertisements
Advertisements

प्रश्न

The volume of an ideal gas (γ = 1.5) is changed adiabatically from 4.00 litres to 3.00 litres. Find the ratio of (a) the final pressure to the initial pressure and (b) the final temperature to the initial temperature.

संक्षेप में उत्तर

उत्तर

Given,
γ = 1.5
Since the process is adiabatic, PVγ = constant.

(a) P1V1γ = P2V2γ
Given, V1 = 4 L
           V2 = 3 L

we need to find `"P"_2/"P" _1.`

`=> "P"_2/"P"_1 = ("V"_1/"V"_2)`

` => (4/3)^1.5  = 1.5396 = 1.54`

(b) Also, for an adiabatic process,
TVγ−1 = constant
T1V1γ−1 = T2V2γ−1

`=> "T"_2/ "T"_1 = ("V"_1/"V"_2)^ (gamma-1) =(4/3)^0.5 = 1.154`

shaalaa.com
Interpretation of Temperature in Kinetic Theory - Introduction of Kinetic Theory of an Ideal Gas
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Specific Heat Capacities of Gases - Exercises [पृष्ठ ७८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 5 Specific Heat Capacities of Gases
Exercises | Q 16 | पृष्ठ ७८

संबंधित प्रश्न

The energy of a given sample of an ideal gas depends only on its


Keeping the number of moles, volume and temperature the same, which of the following are the same for all ideal gases?


The average momentum of a molecule in a sample of an ideal gas depends on


Find the number of molecules in 1 cm3 of an ideal gas at 0°C and at a pressure of 10−5mm of mercury.

Use R = 8.31 J K-1 mol-1


The ratio of the molar heat capacities of an ideal gas is Cp/Cv = 7/6. Calculate the change in internal energy of 1.0 mole of the gas when its temperature is raised by 50 K (a) keeping the pressure constant (b) keeping the volume constant and (c) adiaba


An amount Q of heat is added to a monatomic ideal gas in a process in which the gas performs a work Q/2 on its surrounding. Find the molar heat capacity for the process


An ideal gas is taken through a process in which the pressure and the volume are changed according to the equation p = kV. Show that the molar heat capacity of the gas for the process is given by `"C" ="C"_"v" +"R"/2.`


An ideal gas (Cp / Cv = γ) is taken through a process in which the pressure and the volume vary as p = aVb. Find the value of b for which the specific heat capacity in the process is zero.


Two ideal gases have the same value of Cp / Cv = γ. What will be the value of this ratio for a mixture of the two gases in the ratio 1 : 2?


Half mole of an ideal gas (γ = 5/3) is taken through the cycle abcda, as shown in the figure. Take  `"R" = 25/3"J""K"^-1 "mol"^-1 `. (a) Find the temperature of the gas in the states a, b, c and d. (b) Find the amount of heat supplied in the processes ab and bc. (c) Find the amount of heat liberated in the processes cd and da.


An ideal gas at pressure 2.5 × 105 Pa and temperature 300 K occupies 100 cc. It is adiabatically compressed to half its original volume. Calculate (a) the final pressure (b) the final temperature and (c) the work done by the gas in the process. Take γ = 1.5


Consider a given sample of an ideal gas (Cp/Cv = γ) having initial pressure p0 and volume V0. (a) The gas is  isothermally taken to a pressure p0/2 and from there, adiabatically to a pressure p0/4. Find the final volume. (b) The gas is brought back to its initial state. It is adiabatically taken to a pressure p0/2 and from there, isothermally to a pressure p0/4. Find the final volume.


Two vessels A and B of equal volume V0 are connected by a narrow tube that can be closed by a valve. The vessels are fitted with pistons that can be moved to change the volumes. Initially, the valve is open and the vessels contain an ideal gas (Cp/Cv = γ) at atmospheric pressure p0 and atmospheric temperature T0. The walls of vessel A are diathermic and those of B are adiabatic. The valve is now closed and the pistons are slowly pulled out to increase the volumes of the vessels to double the original value. (a) Find the temperatures and pressures in the two vessels. (b) The valve is now opened for sufficient time so that the gases acquire a common temperature and pressure. Find the new values of the temperature and pressure.


An ideal gas of density 1.7 × 10−3 g cm−3 at a pressure of 1.5 × 105 Pa is filled in a Kundt's tube. When the gas is resonated at a frequency of 3.0 kHz, nodes are formed at a separation of 6.0 cm. Calculate the molar heat capacities Cp and Cv of the gas.


A cubic vessel (with faces horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of 500 ms–1 in vertical direction. The pressure of the gas inside the vessel as observed by us on the ground ______.


In a diatomic molecule, the rotational energy at a given temperature ______.

  1. obeys Maxwell’s distribution.
  2. have the same value for all molecules.
  3. equals the translational kinetic energy for each molecule.
  4. is (2/3)rd the translational kinetic energy for each molecule.

When an ideal gas is compressed adiabatically, its temperature rises: the molecules on the average have more kinetic energy than before. The kinetic energy increases ______.

  1. because of collisions with moving parts of the wall only.
  2. because of collisions with the entire wall.
  3. because the molecules gets accelerated in their motion inside the volume.
  4. because of redistribution of energy amongst the molecules.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×