Advertisements
Advertisements
Question
A mixture contains 1 mole of helium (Cp = 2.5 R, Cv = 1.5 R) and 1 mole of hydrogen (Cp= 3.5 R, Cv = 2.5 R). Calculate the values of Cp, Cv and γ for the mixture.
Solution
Specific heat at constant pressure of helium, Cp' = 2.5 R
Specific heat at constant pressure of hydrogen, Cp" = 3.5 R
Specific heat at constant volume of helium, Cv' = 1.5 R
Specific heat at constant volume of hydrogen, Cv" = 2.5 R
n1 = n2 = 1 mol
dU = nCvdT
For the mixture of two gases,
dU1 +dU2 = 1 mol
[n1 + n2] CvdT = n1C'vdT + n2C"vdT,
where Cv is the heat capacity of the mixture
`=> "C"_"v" =("n"_1"C"'_"v" + "n"_2"C"''_"v")/("n"_1+"n"_2)`
`= (1.5"R" +2.5"R")/2 =2"R"`
Cp = Cv + R = 2R + R = 3R
`gamma = "C"_"p"/"C"_"v" = (3"R")/(2"R") = 1.5`
APPEARS IN
RELATED QUESTIONS
The specific heat capacity of water is
Does a gas have just two specific heat capacities or more than two? Is the number of specific heat capacities of a gas countable?
Can we define specific heat capacity at constant temperature?
Can we define specific heat capacity for an adiabatic process?
Does a solid also have two kinds of molar heat capacities Cp and Cv? If yes, is Cp > Cv? Or is Cp − Cv = R?
Can a process on an ideal gas be both adiabatic and isothermal?
In an isothermal process on an ideal gas, the pressure increases by 0.5%. The volume decreases by about
Consider the processes A and B shown in the figure. It is possible that
Three identical adiabatic containers A, B and C contain helium, neon and oxygen, respectively, at equal pressure. The gases are pushed to half their original volumes.
(a) The final temperatures in the three containers will be the same.
(b) The final pressures in the three containers will be the same.
(c) The pressures of helium and neon will be the same but that of oxygen will be different.
(d) The temperatures of helium and neon will be the same but that of oxygen will be different.
A sample of air weighing 1.18 g occupies 1.0 × 103 cm3 when kept at 300 K and 1.0 × 105 Pa. When 2.0 cal of heat is added to it at constant volume, its temperature increases by 1°C. Calculate the amount of heat needed to increase the temperature of air by 1°C at constant pressure if the mechanical equivalent of heat is 4.2 × 107 erg cal−1. Assume that air behaves as an ideal gas.
An ideal gas expands from 100 cm3 to 200 cm3 at a constant pressure of 2.0 × 105 Pa when 50 J of heat is supplied to it. Calculate (a) the change in internal energy of the gas (b) the number of moles in the gas if the initial temperature is 300 K (c) the molar heat capacity Cp at constant pressure and (d) the molar heat capacity Cv at constant volume.
4.0 g of helium occupies 22400 cm3 at STP. The specific heat capacity of helium at constant pressure is 5.0 cal K−1 mol−1. Calculate the speed of sound in helium at STP.
Standing waves of frequency 5.0 kHz are produced in a tube filled with oxygen at 300 K. The separation between the consecutive nodes is 3.3 cm. Calculate the specific heat capacities Cp and Cv of the gas.
Molar specific heat of water is C = 74.7 J/mol K, its value in cal/g K is ______.
If at same temperature and pressure, the densities for two diatomic gases are respectively d1 and d2 then the ratio of velocities of sound in these gases will be ______.