English
Karnataka Board PUCPUC Science Class 11

Three Identical Adiabatic Containers A, B and C Contain Helium, Neon and Oxygen, Respectively, at Equal Pressure. - Physics

Advertisements
Advertisements

Question

Three identical adiabatic containers A, B and C contain helium, neon and oxygen, respectively, at equal pressure. The gases are pushed to half their original volumes.
(a) The final temperatures in the three containers will be the same.
(b) The final pressures in the three containers will be the same.
(c) The pressures of helium and neon will be the same but that of oxygen will be different.
(d) The temperatures of helium and neon will be the same but that of oxygen will be different.

Answer in Brief

Solution

(c) The pressures of helium and neon will be the same but that of oxygen will be different.
(d) The temperatures of helium and neon will be the same but that of oxygen will be different.

Adiabatic process is expressed as 

p = constant or

TVγ-1 = constant ,

where `gamma = "C"^"p"/("C"^"v")` 

is the ratio of molar heat capacities at constant pressure and volume. 
We know that γ is equal to 1.67 and 1.40 for a monatomic gas and a diatomic gas, respectively. Helium and neon are monatomic gases and oxygen is a diatomic gas. Therefore, changing the state of the gases, i.e. reducing the volume will lead to identical changes in temperature and pressure for helium and neon and that will be different for oxygen. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Specific Heat Capacities of Gases - MCQ [Page 77]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 5 Specific Heat Capacities of Gases
MCQ | Q 5 | Page 77

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Can a process on an ideal gas be both adiabatic and isothermal?


Show that the slope of the p−V diagram is greater for an adiabatic process compared to an isothermal process.


Can two states of an ideal gas be connected by an isothermal process as well as an adiabatic process?


In an isothermal process on an ideal gas, the pressure increases by 0.5%. The volume decreases by about


Two samples A and B are initially kept in the same state. Sample A is expanded through an adiabatic process and the sample B through an isothermal process. The final volumes of the samples are the same. The final pressures in A and B are pA and pBrespectively.


Let ∆Wa and ∆Wb be the work done by the systems A and B, respectively, in the previous question.


Consider the processes A and B shown in the figure. It is possible that


5 g of a gas is contained in a rigid container and is heated from 15°C to 25°C. Specific heat capacity of the gas at constant volume is 0.172 cal g−1 °C−1 and the mechanical equivalent of heat is 4.2 J cal−1. Calculate the change in the internal energy of the gas


A sample of air weighing 1.18 g occupies 1.0 × 103 cm3 when kept at 300 K and 1.0 × 105 Pa. When 2.0 cal of heat is added to it at constant volume, its temperature increases by 1°C. Calculate the amount of heat needed to increase the temperature of air by 1°C at constant pressure if the mechanical equivalent of heat is  4.2 × 107 erg cal−1. Assume that air behaves as an ideal gas.


A mixture  contains 1 mole of helium (Cp = 2.5 R, Cv = 1.5 R) and 1 mole of hydrogen (Cp= 3.5 R, Cv = 2.5 R). Calculate the values of Cp, Cv and γ for the mixture.


In Joly's differential steam calorimeter, 3 g of an ideal gas is contained in a rigid closed sphere at 20°C. The sphere is heated by steam at 100°C and it is found that an extra 0.095 g of steam has condensed into water as the temperature of the gas becomes constant. Calculate the specific heat capacity of the gas in J g−1 K−1. The latent heat of vaporisation of water = 540 cal g−1 


Air (γ = 1.4) is pumped at 2 atm pressure in a motor tyre at 20°C. If the tyre suddenly bursts, what would be the temperature of the air coming out of the tyre? Neglect any mixing with the atmospheric air.


The figure shows two vessels with adiabatic walls, one containing 0.1 g of helium (γ = 1.67, M = 4 g mol−1)  and the other containing some amount of hydrogen (γ = 1.4, M = 2 g mol−1). Initially, the temperatures of the two gases are equal. The gases are electrically heated for some time during which equal amounts of heat are given to the two gases. It is found that the temperatures rise through the same amount in the two vessels. Calculate the mass of hydrogen.


The speed of sound in hydrogen at 0°C is 1280 m s−1. The density of hydrogen at STP is 0.089 kg m−3. Calculate the molar heat capacities Cp and Cv of hydrogen.


Molar specific heat of water is C = 74.7 J/mol K, its value in cal/g K is ______. 


An engine takes in 5 moles of air at 20°C and 1 atm, and compresses it adiabatically to `1/10^"th"` of the original volume. Assuming air to be a diatomic ideal gas made up of rigid molecules, the change in its internal energy during this process comes out to be X kJ. The value of X to the nearest integer is ______.


A diatomic molecule can be modelled as two rigid balls connected with spring such that the balls can vibrate with respect to centre of mass of the system (spring + balls). Consider a diatomic gas made of such diatomic molecule. If the gas performs 20 Joule of work under isobaric condition, then heat given to the gas is ______ J.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×