Advertisements
Advertisements
Question
Show that the slope of the p−V diagram is greater for an adiabatic process compared to an isothermal process.
Solution
In an isothermal process,
PV = k ...(i)
On differentiating it w.r.t V, we get
`"V" (dP)/(dV) + "P" = 0`
`(dP)/(dV) = -"P"/"V"`
`(dP)/(dV) = - "k"/"V"^2` [ Using (i)] , k = constant
k = constant
In an adiabatic process,
PVγ = K ...(ii)
On differentiating it w.r.t V, we get
`"V"^gamma(d"P")/(d"V")+ gamma"PV"^(gamma-1) = 0`
`(d"P")/(d"V") = -( gamma "P""V"^(gamma-1))/"V" ^ (gamma+1) ["Using" (ii) , γ > 1 ]` and
K is constant
`gamma and (d"P")/(d"V")`
are the slope of the curve and the ratio of heat capacities at constant pressure and volume, respectively; P is pressure and V is volume of the system.
By comparing the two slopes and keeping in mind that γ >1 , we can see that the slope of the P-V diagram is greater for an adiabatic process than an isothermal process.
APPEARS IN
RELATED QUESTIONS
Given below are densities of some solids and liquids. Give rough estimates of the size of their atoms:
Substance | Atomic Mass (u) | Density (103 Kg m-3) |
Carbon (diamond) | 12.01 | 2.22 |
Gold | 197.00 | 19.32 |
Nitrogen (liquid) | 14.01 | 1.00 |
Lithium | 6.94 | 0.53 |
Fluorine (liquid) | 19.00 | 1.14 |
[Hint: Assume the atoms to be ‘tightly packed’ in a solid or liquid phase, and use the known value of Avogadro’s number. You should, however, not take the actual numbers you obtain for various atomic sizes too literally. Because of the crudeness of the tight packing approximation, the results only indicate that atomic sizes are in the range of a few Å].
Can we define specific heat capacity for an adiabatic process?
In a real gas, the internal energy depends on temperature and also on volume. The energy increases when the gas expands isothermally. Examining the derivation of Cp − Cv = R, find whether Cp − Cv will be more than R, less than R or equal to R for a real gas.
Can a process on an ideal gas be both adiabatic and isothermal?
In an isothermal process on an ideal gas, the pressure increases by 0.5%. The volume decreases by about
Let ∆Wa and ∆Wb be the work done by the systems A and B, respectively, in the previous question.
Consider the processes A and B shown in the figure. It is possible that
A sample of air weighing 1.18 g occupies 1.0 × 103 cm3 when kept at 300 K and 1.0 × 105 Pa. When 2.0 cal of heat is added to it at constant volume, its temperature increases by 1°C. Calculate the amount of heat needed to increase the temperature of air by 1°C at constant pressure if the mechanical equivalent of heat is 4.2 × 107 erg cal−1. Assume that air behaves as an ideal gas.
An ideal gas expands from 100 cm3 to 200 cm3 at a constant pressure of 2.0 × 105 Pa when 50 J of heat is supplied to it. Calculate (a) the change in internal energy of the gas (b) the number of moles in the gas if the initial temperature is 300 K (c) the molar heat capacity Cp at constant pressure and (d) the molar heat capacity Cv at constant volume.
The speed of sound in hydrogen at 0°C is 1280 m s−1. The density of hydrogen at STP is 0.089 kg m−3. Calculate the molar heat capacities Cp and Cv of hydrogen.
4.0 g of helium occupies 22400 cm3 at STP. The specific heat capacity of helium at constant pressure is 5.0 cal K−1 mol−1. Calculate the speed of sound in helium at STP.
Standing waves of frequency 5.0 kHz are produced in a tube filled with oxygen at 300 K. The separation between the consecutive nodes is 3.3 cm. Calculate the specific heat capacities Cp and Cv of the gas.
Molar specific heat of water is C = 74.7 J/mol K, its value in cal/g K is ______.
An engine takes in 5 moles of air at 20°C and 1 atm, and compresses it adiabatically to `1/10^"th"` of the original volume. Assuming air to be a diatomic ideal gas made up of rigid molecules, the change in its internal energy during this process comes out to be X kJ. The value of X to the nearest integer is ______.
A diatomic molecule can be modelled as two rigid balls connected with spring such that the balls can vibrate with respect to centre of mass of the system (spring + balls). Consider a diatomic gas made of such diatomic molecule. If the gas performs 20 Joule of work under isobaric condition, then heat given to the gas is ______ J.
If at same temperature and pressure, the densities for two diatomic gases are respectively d1 and d2 then the ratio of velocities of sound in these gases will be ______.