हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Pivoted Aluminium Bar Falls Much More Slowly Through a Small Region Containing a Magnetic Field than a Similar Bar of an Insulating Material. Explain. - Physics

Advertisements
Advertisements

प्रश्न

A pivoted aluminium bar falls much more slowly through a small region containing a magnetic field than a similar bar of an insulating material. Explain.

टिप्पणी लिखिए

उत्तर

An aluminium bar falls slowly through a small region containing a magnetic field because of the induced eddy currents (or induced emf)  in it. According to Lenz's law this induced eddy current oppose its cause (its motion). Hence, it slows down while falling through a region containing a magnetic field. On the other hand, non-metallic or insulating materials are free from such effects.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Electromagnetic Induction - Short Answers [पृष्ठ ३०३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 16 Electromagnetic Induction
Short Answers | Q 9 | पृष्ठ ३०३

संबंधित प्रश्न

State Lenz's law. Illustrate, by giving an example, how this law helps in predicting the direction of the current in a loop in the presence of a changing magnetic flux.


Predict the direction of induced current in the situation described by the following figure.


Show that Lenz's law is a consequence of conservation of energy.


Predict the directions of induced currents in metal rings 1 and 2 lying in the same plane where current I in the wire is increasing steadily.


Two circular loops of equal radii are placed coaxially at some separation. The first is cut and a battery is inserted in between to drive a current in it. The current changes slightly because of the variation in resistance with temperature. During this period, the two loops _______________ .


A bar magnet is moved along the axis of a copper ring placed far away from the magnet. Looking from the side of the magnet, an anticlockwise current is found to be induced in the ring. Which of the following may be true?
(a) The south pole faces the ring and the magnet moves towards it.
(b) The north pole faces the ring and the magnet moves towards it.
(c) The south pole faces the ring and the magnet moves away from it.
(d) The north pole faces the ring and the magnet moves away from it.


Consider the situation shown in figure. If the closed loop is completely enclosed in the circuit containing the switch, the closed loop will show _______________ .


Explain, with the help of a suitable example, how we can show that Lenz's law is a consequence of the principle of conservation of energy.


Which of the following statements is not correct?


2 A 40 kg boy whose legs are 4 cm in area and 50 cm long falls through a height of 2 m without breaking his leg bones. If the bones can withstand stress of 0.9 x 108 N/m2. The Young's modulus for the material of the bone is ______.


Young's modulus for aluminium is 7 × 1010 Pa. The force needed to stretch an aluminium wire of diameter 2 mm and length 800 mm by 1 mm is ______.


A bar magnet is dropped through a copper ring acceleration of magnet is


Energy dissipate in LCR circuit in


A wire in the form of a tightly wound solenoid is connected to a DC source, and carries a current. If the coil is stretched so that there are gaps between successive elements of the spiral coil, will the current increase or decrease? Explain.


A solenoid is connected to a battery so that a steady current flows through it. If an iron core is inserted into the solenoid, will the current increase or decrease? Explain.


A metallic ring of mass m and radius `l` (ring being horizontal) is falling under gravity in a region having a magnetic field. If z is the vertical direction, the z-component of magnetic field is Bz = Bo (1 + λz). If R is the resistance of the ring and if the ring falls with a velocity v, find the energy lost in the resistance. If the ring has reached a constant velocity, use the conservation of energy to determine v in terms of m, B, λ and acceleration due to gravity g.


A coil is suspended in a uniform magnetic field, with the plane of the coil parallel to the magnetic lines of force. When a current is passed through the coil it starts oscillating: It is very difficult to stop. But if an aluminium plate is placed near to the coil, it stops. This is due to:


Predict the direction of induced current in the situation described by the following figure.


Predict the direction of induced current in the situation described by the following figure.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×