मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Pivoted Aluminium Bar Falls Much More Slowly Through a Small Region Containing a Magnetic Field than a Similar Bar of an Insulating Material. Explain. - Physics

Advertisements
Advertisements

प्रश्न

A pivoted aluminium bar falls much more slowly through a small region containing a magnetic field than a similar bar of an insulating material. Explain.

टीपा लिहा

उत्तर

An aluminium bar falls slowly through a small region containing a magnetic field because of the induced eddy currents (or induced emf)  in it. According to Lenz's law this induced eddy current oppose its cause (its motion). Hence, it slows down while falling through a region containing a magnetic field. On the other hand, non-metallic or insulating materials are free from such effects.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Electromagnetic Induction - Short Answers [पृष्ठ ३०३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 16 Electromagnetic Induction
Short Answers | Q 9 | पृष्ठ ३०३

संबंधित प्रश्‍न

State Lenz's law. Illustrate, by giving an example, how this law helps in predicting the direction of the current in a loop in the presence of a changing magnetic flux.


Use Lenz’s law to determine the direction of induced current in the situation described by the figure:

A wire of irregular shape turning into a circular shape.


What is the direction of induced currents in metal rings 1 and 2 when current I in the wire is increasing steadily? 


Predict the direction of induced current in a metal ring when the ring is moved towards a straight conductor with constant speed v. The conductor is carrying current I in the direction shown in the figure.


Predict the direction of induced current in metal rings 1 and 2 when current I in the wire is steadily decreasing?


A bar magnet is moved in the direction indicated by the arrow between two coils PQ and CD. Predict the directions of induced current in each coil.


Consider the situation shown in figure. If the switch is closed and after some time it is opened again, the closed loop will show ____________ .


A bar magnet is moved along the axis of a copper ring placed far away from the magnet. Looking from the side of the magnet, an anticlockwise current is found to be induced in the ring. Which of the following may be true?
(a) The south pole faces the ring and the magnet moves towards it.
(b) The north pole faces the ring and the magnet moves towards it.
(c) The south pole faces the ring and the magnet moves away from it.
(d) The north pole faces the ring and the magnet moves away from it.


Explain, with the help of a suitable example, how we can show that Lenz's law is a consequence of the principle of conservation of energy.


Young's modulus for aluminium is 7 × 1010 Pa. The force needed to stretch an aluminium wire of diameter 2 mm and length 800 mm by 1 mm is ______.


A bar magnet is dropped through a copper ring acceleration of magnet is


For a coil having L = 2 mH, current flows at the rate of 10-3 AIS. The e.m.f induced is


Lenz's law gives ______


There are two coils A and B as shown in figure. A current starts flowing in B as shown, when A is moved towards B and stops when A stops moving. The current in A is counterclockwise. B is kept stationary when A moves. We can infer that ______.


A conducting wire XY of mass m and neglibile resistance slides smoothly on two parallel conducting wires as shown in figure. The closed circuit has a resistance R due to AC. AB and CD are perfect conductors. There is a ˆ. magnetic field `B = B(t)hatk`.

  1. Write down equation for the acceleration of the wire XY.
  2. If B is independent of time, obtain v(t) , assuming v(0) = u0.
  3. For (b), show that the decrease in kinetic energy of XY equals the heat lost in R.

A metallic ring of mass m and radius `l` (ring being horizontal) is falling under gravity in a region having a magnetic field. If z is the vertical direction, the z-component of magnetic field is Bz = Bo (1 + λz). If R is the resistance of the ring and if the ring falls with a velocity v, find the energy lost in the resistance. If the ring has reached a constant velocity, use the conservation of energy to determine v in terms of m, B, λ and acceleration due to gravity g.


A coil is suspended in a uniform magnetic field, with the plane of the coil parallel to the magnetic lines of force. When a current is passed through the coil it starts oscillating: It is very difficult to stop. But if an aluminium plate is placed near to the coil, it stops. This is due to:


Predict the direction of induced current in the situation described by the following figure.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×