हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Semiconductor is Doped with a Donor Impurity. - Physics

Advertisements
Advertisements

प्रश्न

A semiconductor is doped with a donor impurity.

विकल्प

  •  The hole concentration increases.

  • The hole concentration decreases.

  • The electron concentration increases.

  • The electron concentration decreases.

MCQ

उत्तर

 The electron concentration increases.

When a semiconductor is doped with a donor type such as arsenic or phosphorous, which has five valence electrons, the donor atom replaces the Si or Ge atom. As a result, four out of the five electrons of the donor atom form a covalent bond by sharing an electron with four atoms of silicon. However, the fifth electron is free to move. Also, due to the breaking up of covalent bonds at room temperature, equal number of electrons and holes are produced. Thus, the total number of holes in the n-type semiconductor is less compared to the number of free electrons.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Semiconductors and Semiconductor Devices - MCQ [पृष्ठ ४१८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 23 Semiconductors and Semiconductor Devices
MCQ | Q 7 | पृष्ठ ४१८

संबंधित प्रश्न

Draw separate energy band diagram for conductors, semiconductors and insulators and
label each of them.


Draw energy band diagrams of an n-type and p-type semiconductor at temperature T > 0 K. Mark the donor and acceptor energy levels with their energies.


Distinguish between a metal and an insulator on the basis of energy band diagrams ?


How many 1s energy states are present in one mole of sodium vapour? Are they all filled in normal conditions? How many 3s energy states are present in one mole of sodium vapour? Are they all filled in normal conditions?


Electric conduction in a semiconductor takes place due to


When an impurity is doped into an intrinsic semiconductor, the conductivity of the semiconductor


In a semiconductor,
(a) there are no free electrons at 0 K
(b) there are no free electrons at any temperature
(c) the number of free electrons increases with temperature
(d) the number of free electrons is less than that in a conductor.


The impurity atoms with which pure silicon may be doped to make it a p-type semiconductor are those of
(a) phosphorus
(b) boron
(c) antimony
(d) aluminium.


When a semiconducting material is doped with an impurity, new acceptor levels are created. In a particular thermal collision, a valence electron receives an energy equal to 2kT and just reaches one of the acceptor levels. Assuming that the energy of the electron was at the top edge of the valence band and that the temperature T is equal to 300 K, find the energy of the acceptor levels above the valence band.


The band gap between the valence and the conduction bands in zinc oxide (ZnO) is 3.2 eV. Suppose an electron in the conduction band combines with a hole in the valence band and the excess energy is released in the form of electromagnetic radiation. Find the maximum wavelength that can be emitted in this process.


Estimate the proportion of boron impurity which will increase the conductivity of a pure silicon sample by a factor of 100. Assume that each boron atom creates a hole and the concentration of holes in pure silicon at the same temperature is 7 × 1015 holes per cubic metre. Density of silicon 5 × 1028 atoms per cubic metre.


A semiconducting material has a band gap of 1 eV. Acceptor impurities are doped into it which create acceptor levels 1 meV above the valence band. Assume that the transition from one energy level to the other is almost forbidden if kT is less than 1/50 of the energy gap. Also if kT is more than twice the gap, the upper levels have maximum population. The temperature of the semiconductor is increased from 0 K. The concentration of the holes increases with temperature and after a certain temperature it becomes approximately constant. As the temperature is further increased, the hole concentration again starts increasing at a certain temperature. Find the order of the temperature range in which the hole concentration remains approximately constant.

(Use Planck constant h = 4.14 × 10-15 eV-s, Boltzmann constant k = 8·62 × 10-5 eV/K.)


What is forbidden band?


A window air conditioner is placed on a table inside a well-insulated apartment, plugged in and turned on. What happens to the average temperature of the apartment?


An n-type semiconductor is


A semiconductor is cooled from T.K to T2K its resistance will


In a common-base circuit calculate the change in the base current if that in the emitter current is αmA and a = 0.98


The valance of an impurity added to germanium crystal in order to convert it into p-type semiconductor is


In a common base configuration Ie = 1 mA α = 0.95 the value of base current is


The reaction between α and β parameter of a transistor is given by


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×