हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Simple Pendulum of Length L with a Bob of Mass M is Deflected from Its Rest Position by an Angle θ and Released (Figure Following). - Physics

Advertisements
Advertisements

प्रश्न

A simple pendulum of length L with a bob of mass m is deflected from its rest position by an angle θ and released (following figure). The string hits a peg which is fixed at a distance x below the point of suspension and the bob starts going in a circle centred at the peg. (a) Assuming that initially the bob has a height less than the peg, show that the maximum height reached by the bob equals its  initial height. (b) If the pendulum is released with \[\theta = 90^\circ \text{ and x = L}/2\] , find the maximum height reached by the bob above its lowest position before the string becomes slack. (c) Find the minimum value of x/L for which the bob goes in a complete circle about the peg when the pendulum is released from \[\theta = 90^\circ \]

संख्यात्मक

उत्तर

(a) When the bob has an initial height less than the distance of the peg from the suspension point and the bob is released from rest (Fig.(i)), 
let body travels from A to B then by the principle of conservation of energy (total energy should always be conserved)
Total energy at A = Total energy at B

\[\text{ i . e }. \left( \text{ K . E .} \right)_A + \left( P . E . \right)_A = \left( K . E . \right)_B + \left( P . E . \right)_B \]
\[ \Rightarrow \left( P . E . \right)_A = \left( P . E . \right)_B \]
\[\text{ because }\left( K . E . \right)_A = \left( K . E . \right)_B = 0\]

So, the maximum height reached by the bob is equal to the initial height of the bob.

(b) When the pendulum is released with θ \[= 90^\circ \text{ and  x }= \frac{L}{2},\]

Let the string become slack at point C, so the particle will start making a projectile motion.

Applying the law of conservation of emergy

\[\left( \frac{1}{2} \right) \text{ m}\nu_c^2 - 0 = \text{ mg }\left( \frac{L}{2} \right) \left( 1 - \cos \alpha \right)\]
[because, distance between A and C in the vertical direction is \[\frac{L}{2} \text{ and }\] \[\frac{L}{2} = \left( 1 - \cos \alpha \right)\]
\[ \Rightarrow V_c^2 = gL \left( 1 - \cos \alpha \right) . . . (i)\]
 
Again, from the free-body diagram (fig. (ii)),
\[\frac{m \nu_c^2}{L/2} = \text{ mg } \cos \alpha . . . (\text{ii})\]
[because, Tc = 0]
From equations (i) and (ii),
\[gL \left( 1 - \cos \alpha \right) = \frac{gL}{2} \cos \alpha\]
\[ \Rightarrow 1 - \cos \alpha = \frac{1}{2} \cos \alpha\]
\[ \Rightarrow \frac{3}{2} \cos \alpha = 1\]
\[ \Rightarrow \cos \alpha = \left( \frac{2}{3} \right) . . . (\text{iii})\]
To find highest position C1 upto which the bob can go before the string becomes slack.(as we have found out the value of α   so now we want to find the distance of the highest point upto which the bob goes before the string becomes slack,using this value of α  .
\[BF = \frac{L}{2} + \frac{L}{2} \cos \theta\]
\[ = \frac{L}{2} + \frac{L}{2} \times \frac{2}{3}\]
\[ = L \left( \frac{1}{2} + \frac{1}{3} \right)\]
\[\text{ So, BF }= \left( \frac{5L}{6} \right)\]
(c) If the particle has to complete a vertical circle at the point C,
\[\frac{\text{m}\nu_c^2}{\text{L - x}} = \text{mg} . . . (\text{i})\]

Again, applying energy conservation principle between A and C

\[\left( \frac{1}{2} \right) \text{m}\nu_c^2 - 0 = \text{mg}\left( OC \right)\]

\[ \Rightarrow \left( \frac{1}{2} \right) \text{m}\nu_c^2 = \text{mg}\left\{ L - 2 \left( \text{L - x} \right) \right\}\]

\[ = mg \left( 2\text{x - L} \right)\]

\[ \Rightarrow \nu_c^2 = 2g \left( 2\text{x - L} \right) . . . (\text{ii})\]

From equations (i) and (ii),

\[g \left( L - \text{ x }\right) = 2g \left( 2\text{x - L} \right)\]
\[ \Rightarrow\text{ L - x = 4x - 2L}\]
\[ \Rightarrow 5x = 3L\]
\[ \therefore \frac{x}{L} = \frac{3}{5} = 0 . 6\]
\[\text{ So, the minimum value of } \left( \frac{x}{L} \right) \text{ shoule be }0 . 6 .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Work and Energy - Exercise [पृष्ठ १३६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 8 Work and Energy
Exercise | Q 58 | पृष्ठ १३६

संबंधित प्रश्न

In Figure (i) the man walks 2 m carrying a mass of 15 kg on his hands. In Figure (ii), he walks the same distance pulling the rope behind him. The rope goes over a pulley, and a mass of 15 kg hangs at its other end. In which case is the work done greater?


A ball is given a speed v on a rough horizontal surface. The ball travels through a distance l on the surface and stops. what are the initial and final kinetic energies of the ball?  


Consider the situation of the previous question from a frame moving with a speed v0 parallel to the initial velocity of the block. (a) What are the initial and final kinetic energies? (b) What is the work done by the kinetic friction? 

 

The US athlete Florence Griffith-Joyner won the 100 m sprint gold medal at Seoul Olympics in 1988, setting a new Olympic record of 10⋅54 s. Assume that she achieved her maximum speed in a very short time and then ran the race with that speed till she crossed the line. Take her mass to be 50 kg. Assuming that the track, wind etc. offered an average resistance of one-tenth of her weight, calculate the work done by the resistance during the run. 


The US athlete Florence Griffith-Joyner won the 100 m sprint gold medal at Seoul Olympics in 1988, setting a new Olympic record of 10⋅54 s. Assume that she achieved her maximum speed in a very short time and then ran the race with that speed till she crossed the line. Take her mass to be 50 kg.  What power Griffith-Joyner had to exert to maintain uniform speed?


A water pump lifts water from 10 m below the ground. Water is pumped at a rate of 30 kg/minute with negligible velocity. Calculate the minimum horsepower that the engine should have to do this.

 

A block of mass 100 g is moved with a speed of 5⋅0 m/s at the highest point in a closed circular tube of radius 10 cm kept in a vertical plane. The cross-section of the tube is such that the block just fits in it. The block makes several oscillations inside the tube and finally stops at the lowest point. Find the work done by the tube on the block during the process.


A small block of mass 200 g is kept at the top of a frictionless incline which is 10 m long and 3⋅2 m high. How much work was required (a) to lift the block from the ground and put it an the top, (b) to slide the block up the incline? What will be the speed of the block when it reaches the ground if (c) it falls off the incline and drops vertically to the ground (d) it slides down the incline? Take g = 10 m/s2


A block of mass 250 g is kept on a vertical spring of spring constant 100 N/m fixed from below. The spring is now compressed 10 cm shorter than its natural length and the system is released from this position. How high does the block rise ? Take g = 10 m/s2.  

 

The bob of a stationary pendulum is given a sharp hit to impart it a horizontal speed of \[\sqrt{3 gl}\] . Find the angle rotated by the string before it becomes slack.


A heavy particle is suspended by a 1⋅5 m long string. It is given a horizontal velocity of \[\sqrt{57} \text{m/s}\] (a) Find the angle made by the string with the upward vertical when it becomes slack. (b) Find the speed of the particle at this instant. (c) Find the maximum height reached by the particle over the point of suspension. Take g = 10 m/s2

 

Figure ( following ) shows a smooth track which consists of a straight inclined part of length l joining smoothly with the circular part. A particle of mass m is projected up the incline from its bottom. Find the minimum projection-speed \[\nu_0\] for which the particle reaches the top of the track.


A chain of length l and mass m lies on the surface of a smooth sphere of radius R > l with one end tied to the top of the sphere.  Find the tangential acceleration \[\frac{d\nu}{dt}\] of the chain when the chain starts sliding down.

 

A smooth sphere of radius R is made to translate in a straight line with a constant acceleration a. A particle kept on the top of the sphere is released at zero velocity with respect to the sphere. Find the speed of the particle with respect to the sphere as a function of the angle θ it slides. 


A man, of mass m, standing at the bottom of the staircase, of height L climbs it and stands at its top.

  1. Work done by all forces on man is equal to the rise in potential energy mgL.
  2. Work done by all forces on man is zero.
  3. Work done by the gravitational force on man is mgL.
  4. The reaction force from a step does not do work because the point of application of the force does not move while the force exists.

Give example of a situation in which an applied force does not result in a change in kinetic energy.


Two bodies of unequal mass are moving in the same direction with equal kinetic energy. The two bodies are brought to rest by applying retarding force of same magnitude. How would the distance moved by them before coming to rest compare?


Suppose the average mass of raindrops is 3.0 × 10–5 kg and their average terminal velocity 9 ms–1. Calculate the energy transferred by rain to each square metre of the surface at a place which receives 100 cm of rain in a year.


A rocket accelerates straight up by ejecting gas downwards. In a small time interval ∆t, it ejects a gas of mass ∆m at a relative speed u. Calculate KE of the entire system at t + ∆t and t and show that the device that ejects gas does work = `(1/2)∆m u^2` in this time interval (neglect gravity).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×