हिंदी

A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is ______.

विकल्प

  • `1/3`

  • `4/11`

  • `2/11`

  • `3/11`

MCQ
रिक्त स्थान भरें

उत्तर

A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is `4/11`.

Explanation:

Total number of alphabets in probability = 11

Number of vowels = 4

∴ Required probability = `4/11`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Probability - Exercise [पृष्ठ ३००]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 16 Probability
Exercise | Q 26 | पृष्ठ ३००

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the following can not be valid assignment of probabilities for outcomes of sample space S = {ω1, ω2,ω3,ω4,ω5,ω6,ω7}

Assignment ω1 ω2 ω3 ω4 ω5 ω6 ω7
(a) 0.1 0.01 0.05 0.03 0.01 0.2 0.6
(b) `1/7` `1/7` `1/7` `1/7` `1/7` `1/7` `1/7`
(c) 0.1 0.2 0.3 0.4 0.5 0.6 0.7
(d) –0.1 0.2 0.3 0.4 -0.2 0.1 0.3
(e) `1/14` `2/14` `3/14` `4/14` `5/14` `6/14` `15/14`

A die is thrown, find the probability of following events:

  1. A prime number will appear,
  2. A number greater than or equal to 3 will appear,
  3. A number less than or equal to one will appear,
  4. A number more than 6 will appear,
  5. A number less than 6 will appear.

A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12


A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.

From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.


Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.

Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
0.5 0.35 .... 0.7

4 cards are drawn from a well-shuffled deck of 52 cards. What is the probability of obtaining 3 diamonds and one spade?


From the employees of a company, 5 persons are selected to represent them in the managing committee of the company. Particulars of five persons are as follows:

S. No. Name Sex Age in years
1. Harish M 30
2. Rohan M 33
3. Sheetal F 46
4. Alis F 28
5. Salim M 41

A person is selected at random from this group to act as a spokesperson. What is the probability that the spokesperson will be either male or over 35 years?


If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the digits are repeated?


The number lock of a suitcase has 4 wheels, each labelled with ten digits i.e., from 0 to 9. The lock opens with a sequence of four digits with no repeats. What is the probability of a person getting the right sequence to open the suitcase?


A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that all the three balls are blue balls 


A bag contains 5 red, 6 white and 7 black balls. Two balls are drawn at random. What is the probability that both balls are red or both are black?


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(i) 0.1 0.01 0.05 0.03 0.01 0.2 0.6

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is red or yellow and numbered 1, 2, 3 or 4


Three-digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(B ∩ barC)`


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine Probability of exactly one of the three occurs


If the letters of the word ASSASSINATION are arranged at random. Find the probability that four S’s come consecutively in the word


Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is ______.


Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.


The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ______.


C1
Probability
C2
Written Description
(a) 0.95 (i) An incorrect assignment
(b) 0.02 (ii) No chance of happening
(c) – 0.3 (iii) As much chance of happening as not
(d) 0.5 (iv) Very likely to happen
(e) 0 (v) Very little chance of happening

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×