हिंदी

Three coins are tossed once. Find the probability of getting 3 heads 2 heads at least 2 heads at most 2 heads no head 3 tails exactly two tails no tail atmost two tails. - Mathematics

Advertisements
Advertisements

प्रश्न

Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.
योग

उत्तर

If 3 coins are tossed, then the sample space of the experiment is

S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}

Total possible outcomes = 8

(i) Three heads {HHH} can appear in one way.

So the probability of getting 3 heads = `1/8`

(ii) There are three ways of getting 2 heads or 2 heads 1 tail, HHT, HTH, THH.

Total possible outcomes = 8

Probability of 2 heads appearing = `3/8`

(iii) To get a minimum of 2 heads, 2 heads 1 tail or 3 heads will occur

∴ A minimum of 2 heads can appear in four ways, HHT, HTH, THH, HHH.

Hence, the probability of minimum 2 heads appearing = `4/8`

= `1/2`

(iv) Maximum 2 heads will appear as follows.

(a) No head or three tails

(b) One head 2 tails

(c) 2 heads 1 tail

This {TIT, HTT, THT, TTH, HHT, HTH, THH} can appear in seven ways.

Total possible outcomes = 8

∴ Probability of maximum 2 heads appearing = `7/8`

(v) No head appearing means three tails appearing, which can happen in one way (TTT).

Total possible outcomes = 8

Hence, the probability of no head appearing = `1/8`

(vi) Three tails can appear in one way (TTT).

Probability of three tails appearing = `1/8`

(vii) Actually 2 tails (TTH, THT, HTT) can be obtained in three ways.

Total possible outcomes = 8

∴ Probability of two tails appearing = `3/8`

(viii) No tails means all three heads appear, so (HHH) can happen in only 1 way.

Total possible outcomes = 8

Probability of no tails appearing = `1/8`

(ix) Maximum two tails appearing

⇒ All three tails do not appear.

Probability of all three tails appearing = `1/8`

∴ Probability of maximum two tails appearing = 1 – (Probability of all three tails appearing)

= `1 - 1/8`

= `7/8`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Probability - Exercise 16.3 [पृष्ठ ४०४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 16 Probability
Exercise 16.3 | Q 8 | पृष्ठ ४०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A coin is tossed twice, what is the probability that at least one tail occurs?


A card is selected from a pack of 52 cards.

  1. How many points are there in the sample space?
  2. Calculate the probability that the card is an ace of spades.
  3. Calculate the probability that the card is
    1. an ace
    2. black card.

A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12


A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.

From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.


Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6


Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
0.5 0.35 .... 0.7

If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the digits are repeated?


Two unbiased dice are thrown. Find the probability that the sum of the numbers obtained on the two dice is neither a multiple of 2 nor a multiple of 3


A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that all the three balls are blue balls 


In a lottery, a person chooses six different numbers at random from 1 to 20, and if these six numbers match with six number already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game?


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(i) 0.1 0.01 0.05 0.03 0.01 0.2 0.6

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(ii)
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iii) 0.7 0.06 0.05 0.04 0.03 0.2 0.1

In a single throw of three dice, find the probability of getting the same number on all the three dice.


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability thatat least one is defective


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is blue or white


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is red or yellow and numbered 1, 2, 3 or 4


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is white and numbered higher than 12 or yellow and numbered higher than 26.


One mapping (function) is selected at random from all the mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is ______.


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A ∪ B)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)


A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are white


A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all one ball is red and two balls are white


Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is ______.


The probability that a person visiting a zoo will see the giraffee is 0.72, the probability that he will see the bears is 0.84 and the probability that he will see both is 0.52.


The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get compartment is 0.96.


If A and B are two candidates seeking admission in an engineering College. The probability that A is selected is .5 and the probability that both A and B are selected is at most .3. Is it possible that the probability of B getting selected is 0.7?


The sum of probabilities of two students getting distinction in their final examinations is 1.2


The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ______.


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that atleast one will be green?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×