Advertisements
Advertisements
प्रश्न
Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S = {w1, w2, w3, w4, w5, w6, w7}:
Elementary events: | w1 | w2 | w3 | w4 | w5 | w6 | w7 |
(ii) |
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
उत्तर
w1 | w2 | w3 | w4 | w5 | w6 | w7 |
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
Here, each of the numbers p(ωi) is positive and less than 1.
∴ Sum of probabilities = \[p\left( \omega_1 \right) + p\left( \omega_2 \right) + p\left( \omega_3 \right) + p\left( \omega_4 \right) + p\left( \omega_5 \right) + p\left( \omega_6 \right) + p\left( \omega_7 \right)\]
= \[\frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = 7 \times \frac{1}{7} = 1\]
Thus, the assignment is valid.
APPEARS IN
संबंधित प्रश्न
A card is selected from a pack of 52 cards.
- How many points are there in the sample space?
- Calculate the probability that the card is an ace of spades.
- Calculate the probability that the card is
- an ace
- black card.
There are four men and six women on the city council. If one council member is selected for a committee at random, how likely is it that it is a woman?
A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.
From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.
Three coins are tossed once. Find the probability of getting
- 3 heads
- 2 heads
- at least 2 heads
- at most 2 heads
- no head
- 3 tails
- exactly two tails
- no tail
- atmost two tails.
In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]
Fill in the blank in following table:
P(A) | P(B) | P(A ∩ B) | P(A ∪ B) |
`1/3` | `1/5` | `1/15` | .... |
Fill in the blank in following table:
P(A) | P(B) | P(A ∩ B) | P(A ∪ B) |
0.5 | 0.35 | .... | 0.7 |
A and B throw a pair of dice. If A throws 9, find B's chance of throwing a higher number.
Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 10.
A bag contains 5 red, 6 white and 7 black balls. Two balls are drawn at random. What is the probability that both balls are red or both are black?
Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S = {w1, w2, w3, w4, w5, w6, w7}:
Elementary events: | w1 | w2 | w3 | w4 | w5 | w6 | w7 |
(i) | 0.1 | 0.01 | 0.05 | 0.03 | 0.01 | 0.2 | 0.6 |
Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S = {w1, w2, w3, w4, w5, w6, w7}:
Elementary events: | w1 | w2 | w3 | w4 | w5 | w6 | w7 |
(iii) | 0.7 | 0.06 | 0.05 | 0.04 | 0.03 | 0.2 | 0.1 |
Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S = {w1, w2, w3, w4, w5, w6, w7}:
Elementary events: | w1 | w2 | w3 | w4 | w5 | w6 | w7 |
(iv) |
\[\frac{1}{14}\]
|
\[\frac{2}{14}\]
|
\[\frac{3}{14}\]
|
\[\frac{4}{14}\]
|
\[\frac{5}{14}\]
|
\[\frac{6}{14}\]
|
\[\frac{15}{14}\]
|
A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective
A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective
Two dice are thrown together. The probability that neither they show equal digits nor the sum of their digits is 9 will be
An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is numbered 5, 15, 25, or 35
Three-digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?
Three squares of chessboard are selected at random. The probability of getting 2 squares of one colour and other of a different colour is ______.
If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?
Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that C will be selected?
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(B ∩ barC)`
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(A ∩ barB)`
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine Probability of exactly one of the three occurs
A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are white
If the letters of the word ASSASSINATION are arranged at random. Find the probability that four S’s come consecutively in the word
If the letters of the word ASSASSINATION are arranged at random. Find the probability that two I’s and two N’s come together
If the letters of the word ASSASSINATION are arranged at random. Find the probability that all A’s are not coming together
If the letters of the word ASSASSINATION are arranged at random. Find the probability that no two A’s are coming together
While shuffling a pack of 52 playing cards, 2 are accidentally dropped. Find the probability that the missing cards to be of different colours ______.
Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.
6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is ______.
The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ______.