हिंदी

If the letters of the word ASSASSINATION are arranged at random. Find the probability that all A’s are not coming together - Mathematics

Advertisements
Advertisements

प्रश्न

If the letters of the word ASSASSINATION are arranged at random. Find the probability that all A’s are not coming together

योग

उत्तर

Total number of word is ASSASSINATION are 13.

Where, we have 3A’s, 4S’, 2I’s, 2N’s, 1T’s and 1O’s.

If all A’s are coming together, then three are 11 alphabets

Number of words when all A’s come together

= `(11!)/(4!2!2!)`

∴ Probability when all A’s come together

= `((11!)/(4!2!2!))/((13!)/(4!3!2!2!))`

= `(11!)/(4!2!2!) xx (4!3!2!2!)/(13!)`

= `(11! xx 3!)/(13!)`

= `6/(13 xx 12)`

= `1/26`

∴ Required probability when all A’s do not come together

= `1 - 1/26 = 25/26`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Probability - Exercise [पृष्ठ २९८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 16 Probability
Exercise | Q 14.(c) | पृष्ठ २९८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

There are four men and six women on the city council. If one council member is selected for a committee at random, how likely is it that it is a woman?


A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.

From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.


Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.

Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
`1/3` `1/5` `1/15` ....

Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
0.35 ... 0.25 0.6

From the employees of a company, 5 persons are selected to represent them in the managing committee of the company. Particulars of five persons are as follows:

S. No. Name Sex Age in years
1. Harish M 30
2. Rohan M 33
3. Sheetal F 46
4. Alis F 28
5. Salim M 41

A person is selected at random from this group to act as a spokesperson. What is the probability that the spokesperson will be either male or over 35 years?


A bag contains 5 red, 6 white and 7 black balls. Two balls are drawn at random. What is the probability that both balls are red or both are black?


If a letter is chosen at random from the English alphabet, find the probability that the letter is a consonant .


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(i) 0.1 0.01 0.05 0.03 0.01 0.2 0.6

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability thatat least one is defective


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is numbered 5, 15, 25, or 35


In a leap year the probability of having 53 Sundays or 53 Mondays is ______.


If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?


Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A ∪ B)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)


If the letters of the word ASSASSINATION are arranged at random. Find the probability that four S’s come consecutively in the word


Three numbers are chosen from 1 to 20. Find the probability that they are not consecutive ______.


6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is ______.


If the probabilities for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is ______.


The probability that a person visiting a zoo will see the giraffee is 0.72, the probability that he will see the bears is 0.84 and the probability that he will see both is 0.52.


The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get compartment is 0.96.


The probabilities that a typist will make 0, 1, 2, 3, 4, 5 or more mistakes in typing a report are, respectively, 0.12, 0.25, 0.36, 0.14, 0.08, 0.11. 


The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ______.


C1
Probability
C2
Written Description
(a) 0.95 (i) An incorrect assignment
(b) 0.02 (ii) No chance of happening
(c) – 0.3 (iii) As much chance of happening as not
(d) 0.5 (iv) Very likely to happen
(e) 0 (v) Very little chance of happening

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×