English

Which of the Cannot Be Valid Assignment of Probability for Elementary Events Or Outcomes of Sample Space S = {W1, W2, W3, W4, W5, W6, W7}: Elementary Events: W1 W2 W3 W4 W5 W6 W7 (Ii 1 7 1 7 1 7 - Mathematics

Advertisements
Advertisements

Question

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(ii)
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]

Solution

w1 w2 w3 w4 w5 w6 w7
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]

   Here, each of the numbers p(ωi) is positive and less than 1.
    ∴ Sum of probabilities = \[p\left( \omega_1 \right) + p\left( \omega_2 \right) + p\left( \omega_3 \right) + p\left( \omega_4 \right) + p\left( \omega_5 \right) + p\left( \omega_6 \right) + p\left( \omega_7 \right)\]

= \[\frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = 7 \times \frac{1}{7} = 1\]

  Thus, the assignment is valid.

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Probability - Exercise 33.3 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 33 Probability
Exercise 33.3 | Q 42.2 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A card is selected from a pack of 52 cards.

  1. How many points are there in the sample space?
  2. Calculate the probability that the card is an ace of spades.
  3. Calculate the probability that the card is
    1. an ace
    2. black card.

There are four men and six women on the city council. If one council member is selected for a committee at random, how likely is it that it is a woman?


A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.

From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.


In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
`1/3` `1/5` `1/15` ....

If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the digits are repeated?


A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that all the three balls are blue balls 


A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that  all the balls are of different colours.


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iii) 0.7 0.06 0.05 0.04 0.03 0.2 0.1

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iv)
\[\frac{1}{14}\]
\[\frac{2}{14}\]
\[\frac{3}{14}\]
\[\frac{4}{14}\]
\[\frac{5}{14}\]
\[\frac{6}{14}\]
\[\frac{15}{14}\]

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that all 10 are good


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability thatat least one is defective


Two dice are thrown together. The probability that neither they show equal digits nor the sum of their digits is 9 will be


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is blue or white


Three-digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?


One mapping (function) is selected at random from all the mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is ______.


Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that C will be selected?


Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that A will not be selected?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(A ∩ barB)`


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine Probability of exactly one of the three occurs


If the letters of the word ASSASSINATION are arranged at random. Find the probability that four S’s come consecutively in the word


If the letters of the word ASSASSINATION are arranged at random. Find the probability that two I’s and two N’s come together


Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is ______.


Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.


6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is ______.


A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is ______.


If the probabilities for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is ______.


The probabilities that a typist will make 0, 1, 2, 3, 4, 5 or more mistakes in typing a report are, respectively, 0.12, 0.25, 0.36, 0.14, 0.08, 0.11. 


If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the repetition of digits is not allowed?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×