English

If the probabilities for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is ______. - Mathematics

Advertisements
Advertisements

Question

If the probabilities for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is ______.

Options

  • > 0.5

  • 0.5

  • ≤ 0.5

  • 0

MCQ
Fill in the Blanks

Solution

If the probabilities for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is ≤ 0.5.

Explanation:

Given that: P(A fails) = 0.2

P (B fails) = 0.3

∴ P(either A or B fails) ≤ P(A fails) + P(B fails)

≤ 0.2 + 0.3

≤ 0.5

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Exercise [Page 300]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 16 Probability
Exercise | Q 27 | Page 300

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A die is thrown, find the probability of following events:

  1. A prime number will appear,
  2. A number greater than or equal to 3 will appear,
  3. A number less than or equal to one will appear,
  4. A number more than 6 will appear,
  5. A number less than 6 will appear.

A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12


A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.

From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.


Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.

Two unbiased dice are thrown. Find the probability that the sum of the numbers obtained on the two dice is neither a multiple of 2 nor a multiple of 3


A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that  all the balls are of different colours.


If a letter is chosen at random from the English alphabet, find the probability that the letter is  a vowel .


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iv)
\[\frac{1}{14}\]
\[\frac{2}{14}\]
\[\frac{3}{14}\]
\[\frac{4}{14}\]
\[\frac{5}{14}\]
\[\frac{6}{14}\]
\[\frac{15}{14}\]

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that all 10 are good


Two dice are thrown together. The probability that neither they show equal digits nor the sum of their digits is 9 will be


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is numbered 1, 2, 3, 4 or 5


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is red or yellow and numbered 1, 2, 3 or 4


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is white and numbered higher than 12 or yellow and numbered higher than 26.


In a leap year the probability of having 53 Sundays or 53 Mondays is ______.


If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A ∪ B)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(A ∩ barB)`


A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are white


If the letters of the word ASSASSINATION are arranged at random. Find the probability that four S’s come consecutively in the word


If the letters of the word ASSASSINATION are arranged at random. Find the probability that two I’s and two N’s come together


Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.


If A and B are two candidates seeking admission in an engineering College. The probability that A is selected is .5 and the probability that both A and B are selected is at most .3. Is it possible that the probability of B getting selected is 0.7?


The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ______.


C1
Probability
C2
Written Description
(a) 0.95 (i) An incorrect assignment
(b) 0.02 (ii) No chance of happening
(c) – 0.3 (iii) As much chance of happening as not
(d) 0.5 (iv) Very likely to happen
(e) 0 (v) Very little chance of happening

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that atleast one will be green?


If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the repetition of digits is not allowed?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×