English

If the letters of the word ASSASSINATION are arranged at random. Find the probability that four S’s come consecutively in the word - Mathematics

Advertisements
Advertisements

Question

If the letters of the word ASSASSINATION are arranged at random. Find the probability that four S’s come consecutively in the word

Sum

Solution

Total number of word is ASSASSINATION are 13.

Where, we have 3A’s, 4S’, 2I’s, 2N’s, 1T’s and 1O’s.

If 4 S’s come consecutively in the word, then arrangement may be as follows:

`(SSSS)/(1 "Group") (A A AI I N N T O)/(9  "others")`

∴ Number of words when all S’s are together = `(10!)/(3!2!21)` and the total number of word formed from the words

ASSASSINATION = `(13!)/(3!4!2!!)`

∴ Required probability = `((10!)/(3!2!2!))/((13!)/(3!4!2!2!))`

= `(10!)/(3!2!2!) xx (3!4!2!2!)/(13!)`

= `(10!4!)/(13!)`

= `(10! xx 4 xx 3 xx 2)/(13 xx 12 xx 11 xx 10!)`

= `2/143`

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Exercise [Page 298]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 16 Probability
Exercise | Q 14.(a) | Page 298

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A coin is tossed twice, what is the probability that at least one tail occurs?


A die is thrown, find the probability of following events:

  1. A prime number will appear,
  2. A number greater than or equal to 3 will appear,
  3. A number less than or equal to one will appear,
  4. A number more than 6 will appear,
  5. A number less than 6 will appear.

A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12


Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.

In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]


Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6


4 cards are drawn from a well-shuffled deck of 52 cards. What is the probability of obtaining 3 diamonds and one spade?


If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the digits are repeated?


Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 10.

 

Two unbiased dice are thrown. Find the probability that  neither a doublet nor a total of 8 will appear


A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that  all the balls are of different colours.


If a letter is chosen at random from the English alphabet, find the probability that the letter is a consonant .


In a lottery, a person chooses six different numbers at random from 1 to 20, and if these six numbers match with six number already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game?


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(ii)
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iii) 0.7 0.06 0.05 0.04 0.03 0.2 0.1

In a single throw of three dice, find the probability of getting the same number on all the three dice.


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is blue or white


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is numbered 5, 15, 25, or 35


Three-digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?


One mapping (function) is selected at random from all the mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is ______.


If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?


Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?


Three numbers are chosen from 1 to 20. Find the probability that they are not consecutive ______.


A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is ______.


The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get compartment is 0.96.


The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×