English

A die is thrown, find the probability of following events: A prime number will appear, A number greater than or equal to 3 will appear, A number less than or equal to one will appear, - Mathematics

Advertisements
Advertisements

Question

A die is thrown, find the probability of following events:

  1. A prime number will appear,
  2. A number greater than or equal to 3 will appear,
  3. A number less than or equal to one will appear,
  4. A number more than 6 will appear,
  5. A number less than 6 will appear.
Sum

Solution

Sample space of a experiment in throwing a dice

S = {1, 2, 3, 4, 5, 6}

That is, total possible outcomes n(S) = 6

i. Prime numbers are 2, 3, 5.

n (A) = 3

Hence, probability of a prime number appearing = `("n"("A"))/("n"("S")) = 3/6 = 1/2`

ii. Let the event 3 or a number greater than 3 be denoted by B, 3 or numbers greater than 3 are 3, 4, 5, 6.

n (B) = 4

Hence, probability, P(B) = `("n"("B"))/("n"("s")) = 4/6 = 2/3`

iii. Let the event 1 or a number less than 1 be denoted by C.

Numbers greater than 1 or 1 = 1

∴ n(C) = 1

Hence, probability, P(C) = `1/6`

iv. There is no number greater than 6 on a die, i.e. its probability = `0/6 = 0`

v. Numbers less than 6 are: 1, 2, 3, 4, 5. If it is represented by E, then

n(E) = 5

Hence, probability, P(E) = `5/6`

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Exercise 16.3 [Page 404]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 16 Probability
Exercise 16.3 | Q 3 | Page 404

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A card is selected from a pack of 52 cards.

  1. How many points are there in the sample space?
  2. Calculate the probability that the card is an ace of spades.
  3. Calculate the probability that the card is
    1. an ace
    2. black card.

A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12


A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.

From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.


Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.

In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]


Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
`1/3` `1/5` `1/15` ....

4 cards are drawn from a well-shuffled deck of 52 cards. What is the probability of obtaining 3 diamonds and one spade?


A and B throw a pair of dice. If A throws 9, find B's chance of throwing a higher number.

 

Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 10.

 

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(i) 0.1 0.01 0.05 0.03 0.01 0.2 0.6

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(ii)
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iv)
\[\frac{1}{14}\]
\[\frac{2}{14}\]
\[\frac{3}{14}\]
\[\frac{4}{14}\]
\[\frac{5}{14}\]
\[\frac{6}{14}\]
\[\frac{15}{14}\]

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that all 10 are good


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is blue or white


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is white and numbered higher than 12 or yellow and numbered higher than 26.


In a leap year the probability of having 53 Sundays or 53 Mondays is ______.


If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A ∪ B)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)


A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are red


If the letters of the word ASSASSINATION are arranged at random. Find the probability that two I’s and two N’s come together


While shuffling a pack of 52 playing cards, 2 are accidentally dropped. Find the probability that the missing cards to be of different colours ______.


Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.


The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ______.


C1
Probability
C2
Written Description
(a) 0.95 (i) An incorrect assignment
(b) 0.02 (ii) No chance of happening
(c) – 0.3 (iii) As much chance of happening as not
(d) 0.5 (iv) Very likely to happen
(e) 0 (v) Very little chance of happening

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that atleast one will be green?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×