English

A Box Contains 100 Bulbs, 20 of Which Are Defective. 10 Bulbs Are Selected for Inspection. Find the Probability that None is Defective - Mathematics

Advertisements
Advertisements

Question

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective

Solution

Out of 100 bulbs, 10 can be chosen in 100C10 ways.
So, total number of elementary events = 100C10

'None is defective' means that all are non-defective bulbs. The number of ways of selecting all 10 non-defective bulbs out
of 80 is 80C10 ways.
∴ Favourable number of elementary events = 80C10
 Hence, required probability = \[\frac{^{80}{}{C}_{10}}{^{100}{}{C}_{10}}\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Probability - Exercise 33.3 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 33 Probability
Exercise 33.3 | Q 44.4 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.

In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
0.35 ... 0.25 0.6

4 cards are drawn from a well-shuffled deck of 52 cards. What is the probability of obtaining 3 diamonds and one spade?


If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the digits are repeated?


The number lock of a suitcase has 4 wheels, each labelled with ten digits i.e., from 0 to 9. The lock opens with a sequence of four digits with no repeats. What is the probability of a person getting the right sequence to open the suitcase?


Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 10.

 

A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that all the three balls are blue balls 


A bag contains 5 red, 6 white and 7 black balls. Two balls are drawn at random. What is the probability that both balls are red or both are black?


If a letter is chosen at random from the English alphabet, find the probability that the letter is  a vowel .


If a letter is chosen at random from the English alphabet, find the probability that the letter is a consonant .


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that all 10 are good


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is blue or white


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is numbered 5, 15, 25, or 35


In a leap year the probability of having 53 Sundays or 53 Mondays is ______.


One mapping (function) is selected at random from all the mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is ______.


If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?


Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that C will be selected?


Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that A will not be selected?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(B ∩ barC)`


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A ∪ B)


If the letters of the word ASSASSINATION are arranged at random. Find the probability that all A’s are not coming together


While shuffling a pack of 52 playing cards, 2 are accidentally dropped. Find the probability that the missing cards to be of different colours ______.


6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is ______.


If A and B are two candidates seeking admission in an engineering College. The probability that A is selected is .5 and the probability that both A and B are selected is at most .3. Is it possible that the probability of B getting selected is 0.7?


The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ______.


If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the repetition of digits is not allowed?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×