Advertisements
Advertisements
Question
Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that A will not be selected?
Solution
Given that A is twice as likely to be selected as B
i.e. P(A) = 2P(B)
And C is twice as likely to be selected as D
∴ P(C) = 2P(D)
⇒ P(B) = 2P(D)
⇒ `(P(A))/2` = 2P(D)
⇒ P(D) = `1/4`P(A)
Now B and C are given about the same chance
∴ P(B) = P(C)
Since, sum of all probabilities = 1
∴ P(A) + P(B) + P(C) + P(D) = 1
⇒ `P(A) + (P(A))/2 + (P(A))/2 + (P(A))/4` = 1
⇒ 4P(A) + 2P(A) + 2P(A) + P(A) = 4
⇒ 9P(A) = 4
⇒ P(A) = `4/9`
P(A will not be selected) = P(A') = 1 – P(A)
= `1 - 4/9`
= `5/9`
APPEARS IN
RELATED QUESTIONS
Which of the following can not be valid assignment of probabilities for outcomes of sample space S = {ω1, ω2,ω3,ω4,ω5,ω6,ω7}
Assignment | ω1 | ω2 | ω3 | ω4 | ω5 | ω6 | ω7 |
(a) | 0.1 | 0.01 | 0.05 | 0.03 | 0.01 | 0.2 | 0.6 |
(b) | `1/7` | `1/7` | `1/7` | `1/7` | `1/7` | `1/7` | `1/7` |
(c) | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
(d) | –0.1 | 0.2 | 0.3 | 0.4 | -0.2 | 0.1 | 0.3 |
(e) | `1/14` | `2/14` | `3/14` | `4/14` | `5/14` | `6/14` | `15/14` |
Three coins are tossed once. Find the probability of getting
- 3 heads
- 2 heads
- at least 2 heads
- at most 2 heads
- no head
- 3 tails
- exactly two tails
- no tail
- atmost two tails.
In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that all will be blue?
From the employees of a company, 5 persons are selected to represent them in the managing committee of the company. Particulars of five persons are as follows:
S. No. | Name | Sex | Age in years |
1. | Harish | M | 30 |
2. | Rohan | M | 33 |
3. | Sheetal | F | 46 |
4. | Alis | F | 28 |
5. | Salim | M | 41 |
A person is selected at random from this group to act as a spokesperson. What is the probability that the spokesperson will be either male or over 35 years?
Two unbiased dice are thrown. Find the probability that neither a doublet nor a total of 8 will appear
Two unbiased dice are thrown. Find the probability that the sum of the numbers obtained on the two dice is neither a multiple of 2 nor a multiple of 3
A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that all the three balls are blue balls
A bag contains 5 red, 6 white and 7 black balls. Two balls are drawn at random. What is the probability that both balls are red or both are black?
Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S = {w1, w2, w3, w4, w5, w6, w7}:
Elementary events: | w1 | w2 | w3 | w4 | w5 | w6 | w7 |
(iii) | 0.7 | 0.06 | 0.05 | 0.04 | 0.03 | 0.2 | 0.1 |
An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is numbered 5, 15, 25, or 35
In a leap year the probability of having 53 Sundays or 53 Mondays is ______.
Three squares of chessboard are selected at random. The probability of getting 2 squares of one colour and other of a different colour is ______.
One mapping (function) is selected at random from all the mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is ______.
Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?
Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that C will be selected?
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A ∪ B)
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(A ∩ barB)`
A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are red
In a non-leap year, the probability of having 53 tuesdays or 53 wednesdays is ______.
Three numbers are chosen from 1 to 20. Find the probability that they are not consecutive ______.
Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.
6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is ______.
The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get compartment is 0.96.
If A and B are two candidates seeking admission in an engineering College. The probability that A is selected is .5 and the probability that both A and B are selected is at most .3. Is it possible that the probability of B getting selected is 0.7?