English

One mapping (function) is selected at random from all the mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is ______. - Mathematics

Advertisements
Advertisements

Question

One mapping (function) is selected at random from all the mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is ______.

Options

  • `1/n^n`

  • `1/n`

  • `(n - 1)/(n^(n - 1))`

  • None of these

MCQ
Fill in the Blanks

Solution

One mapping (function) is selected at random from all the mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is `(n - 1)/(n^(n - 1))`.

Explanation:

Total number of mappings from a set A having n elements onto itself is nn

Now, for one-to-one mapping the first element in A can have any of the n images in A; the 2nd element in A can have any of the remaining (n – 1) images, counting like this, the nth element in A can have only 1 image.

Therefore, the total number of one-to-one mappings is n.

Hence the required probability is `n/n^n = (n(n - 1))/(n n^(n - 1)) = (n - 1)/(n^(n - 1))`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Solved Examples [Page 296]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 16 Probability
Solved Examples | Q 15 | Page 296

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which of the following can not be valid assignment of probabilities for outcomes of sample space S = {ω1, ω2,ω3,ω4,ω5,ω6,ω7}

Assignment ω1 ω2 ω3 ω4 ω5 ω6 ω7
(a) 0.1 0.01 0.05 0.03 0.01 0.2 0.6
(b) `1/7` `1/7` `1/7` `1/7` `1/7` `1/7` `1/7`
(c) 0.1 0.2 0.3 0.4 0.5 0.6 0.7
(d) –0.1 0.2 0.3 0.4 -0.2 0.1 0.3
(e) `1/14` `2/14` `3/14` `4/14` `5/14` `6/14` `15/14`

A coin is tossed twice, what is the probability that at least one tail occurs?


A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12


There are four men and six women on the city council. If one council member is selected for a committee at random, how likely is it that it is a woman?


A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.

From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.


In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]


Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
`1/3` `1/5` `1/15` ....

If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the digits are repeated?


The number lock of a suitcase has 4 wheels, each labelled with ten digits i.e., from 0 to 9. The lock opens with a sequence of four digits with no repeats. What is the probability of a person getting the right sequence to open the suitcase?


Two unbiased dice are thrown. Find the probability that the sum of the numbers obtained on the two dice is neither a multiple of 2 nor a multiple of 3


A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that all the three balls are blue balls 


A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that  all the balls are of different colours.


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(ii)
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]

In a single throw of three dice, find the probability of getting the same number on all the three dice.


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability thatat least one is defective


Three-digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?


Three squares of chessboard are selected at random. The probability of getting 2 squares of one colour and other of a different colour is ______.


Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)


A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all one ball is red and two balls are white


If the letters of the word ASSASSINATION are arranged at random. Find the probability that no two A’s are coming together


In a non-leap year, the probability of having 53 tuesdays or 53 wednesdays is ______.


A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is ______.


If the probabilities for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is ______.


The probability that a person visiting a zoo will see the giraffee is 0.72, the probability that he will see the bears is 0.84 and the probability that he will see both is 0.52.


If A and B are two candidates seeking admission in an engineering College. The probability that A is selected is .5 and the probability that both A and B are selected is at most .3. Is it possible that the probability of B getting selected is 0.7?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×