English

Without repetition of the numbers, four digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______. - Mathematics

Advertisements
Advertisements

Question

Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.

Options

  • `1/5`

  • `4/5`

  • `1/30`

  • `5/9`

MCQ
Fill in the Blanks

Solution

Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is `5/9`.

Explanation:

Four digit number using the digits 0, 2, 3, 5 without repetition and divisible by 5 with the given conditions is

If unit place be filled with 0

3 2 1 1

Then the number of ways = 3 × 2 × 1 × 1 = 6

If unit place be filled with 5

2 2 1 1

Then the number of ways = 2 × 2 × 1 × 1 = 4

∴ Total number of ways = 6 + 4 = 10

Total number of ways of arranging the digits 0, 2, 3, 5 to form 4-digit numbers without repetition is 3 × 3 × 2 × 1 = 18

∴ Required probability = `10/18 = 5/9`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Exercise [Page 300]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 16 Probability
Exercise | Q 22 | Page 300

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12


Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.

Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
0.35 ... 0.25 0.6

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that all will be blue?


A and B throw a pair of dice. If A throws 9, find B's chance of throwing a higher number.

 

A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that  all the balls are of different colours.


If a letter is chosen at random from the English alphabet, find the probability that the letter is  a vowel .


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(i) 0.1 0.01 0.05 0.03 0.01 0.2 0.6

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(ii)
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iv)
\[\frac{1}{14}\]
\[\frac{2}{14}\]
\[\frac{3}{14}\]
\[\frac{4}{14}\]
\[\frac{5}{14}\]
\[\frac{6}{14}\]
\[\frac{15}{14}\]

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that all 10 are good


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective


Two dice are thrown together. The probability that neither they show equal digits nor the sum of their digits is 9 will be


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is blue or white


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is numbered 5, 15, 25, or 35


Three squares of chessboard are selected at random. The probability of getting 2 squares of one colour and other of a different colour is ______.


Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that C will be selected?


Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that A will not be selected?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(B ∩ barC)`


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A ∪ B)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine Probability of exactly one of the three occurs


If the letters of the word ASSASSINATION are arranged at random. Find the probability that four S’s come consecutively in the word


Three numbers are chosen from 1 to 20. Find the probability that they are not consecutive ______.


Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is ______.


A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is ______.


The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get compartment is 0.96.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×