Advertisements
Advertisements
Question
4 cards are drawn from a well-shuffled deck of 52 cards. What is the probability of obtaining 3 diamonds and one spade?
Solution
Number of ways to drawn 4 cards from a deck of 52 cards = 52C4
∴ n(S) = 52C4
Number of ways to obtain 3 diamonds = 13C3
Number of ways to drawn 1 spade = 13C1
Number of ways to drawn 3 diamonds and one spade = 13C3 × 13C1
Total number of favourable outcomes = 13C3 × 13C1
Hence, the probability of obtaining 3 diamonds and 1 spade = `(""^13C_3 xx ""^13C_1)/(""^52C_4)`
APPEARS IN
RELATED QUESTIONS
Which of the following can not be valid assignment of probabilities for outcomes of sample space S = {ω1, ω2,ω3,ω4,ω5,ω6,ω7}
Assignment | ω1 | ω2 | ω3 | ω4 | ω5 | ω6 | ω7 |
(a) | 0.1 | 0.01 | 0.05 | 0.03 | 0.01 | 0.2 | 0.6 |
(b) | `1/7` | `1/7` | `1/7` | `1/7` | `1/7` | `1/7` | `1/7` |
(c) | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
(d) | –0.1 | 0.2 | 0.3 | 0.4 | -0.2 | 0.1 | 0.3 |
(e) | `1/14` | `2/14` | `3/14` | `4/14` | `5/14` | `6/14` | `15/14` |
A coin is tossed twice, what is the probability that at least one tail occurs?
A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12
There are four men and six women on the city council. If one council member is selected for a committee at random, how likely is it that it is a woman?
In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]
Check whether the following probabilities P(A) and P(B) are consistently defined
P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
Fill in the blank in following table:
P(A) | P(B) | P(A ∩ B) | P(A ∪ B) |
`1/3` | `1/5` | `1/15` | .... |
Fill in the blank in following table:
P(A) | P(B) | P(A ∩ B) | P(A ∪ B) |
0.5 | 0.35 | .... | 0.7 |
From the employees of a company, 5 persons are selected to represent them in the managing committee of the company. Particulars of five persons are as follows:
S. No. | Name | Sex | Age in years |
1. | Harish | M | 30 |
2. | Rohan | M | 33 |
3. | Sheetal | F | 46 |
4. | Alis | F | 28 |
5. | Salim | M | 41 |
A person is selected at random from this group to act as a spokesperson. What is the probability that the spokesperson will be either male or over 35 years?
The number lock of a suitcase has 4 wheels, each labelled with ten digits i.e., from 0 to 9. The lock opens with a sequence of four digits with no repeats. What is the probability of a person getting the right sequence to open the suitcase?
A and B throw a pair of dice. If A throws 9, find B's chance of throwing a higher number.
Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 10.
Two unbiased dice are thrown. Find the probability that neither a doublet nor a total of 8 will appear
Two unbiased dice are thrown. Find the probability that the sum of the numbers obtained on the two dice is neither a multiple of 2 nor a multiple of 3
If a letter is chosen at random from the English alphabet, find the probability that the letter is a consonant .
In a single throw of three dice, find the probability of getting the same number on all the three dice.
A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective
A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability thatat least one is defective
A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective
Three squares of chessboard are selected at random. The probability of getting 2 squares of one colour and other of a different colour is ______.
If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?
Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(B ∩ barC)`
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(A ∩ barB)`
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine Probability of exactly one of the three occurs
A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are red
If the letters of the word ASSASSINATION are arranged at random. Find the probability that all A’s are not coming together
If the letters of the word ASSASSINATION are arranged at random. Find the probability that no two A’s are coming together
Three numbers are chosen from 1 to 20. Find the probability that they are not consecutive ______.
While shuffling a pack of 52 playing cards, 2 are accidentally dropped. Find the probability that the missing cards to be of different colours ______.
Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.
A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is ______.
If the probabilities for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is ______.
The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get compartment is 0.96.
The probabilities that a typist will make 0, 1, 2, 3, 4, 5 or more mistakes in typing a report are, respectively, 0.12, 0.25, 0.36, 0.14, 0.08, 0.11.
C1 Probability |
C2 Written Description |
(a) 0.95 | (i) An incorrect assignment |
(b) 0.02 | (ii) No chance of happening |
(c) – 0.3 | (iii) As much chance of happening as not |
(d) 0.5 | (iv) Very likely to happen |
(e) 0 | (v) Very little chance of happening |
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that atleast one will be green?