English

An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered fr - Mathematics

Advertisements
Advertisements

Question

An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is red or yellow and numbered 1, 2, 3 or 4

Sum

Solution

P(Red or yellow and numbered 1, 2, 3 or 4)

= P(Red numbered 1, 2, 3 or 4) + P(Yellow numbered 1, 2, 3 or 4)

= `4/80 + 4/80`

= `8/80`

= `1/10`

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Solved Examples [Page 292]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 16 Probability
Solved Examples | Q 8.(c) | Page 292

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.

From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.


Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.

In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]


Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6


Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
`1/3` `1/5` `1/15` ....

Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
0.5 0.35 .... 0.7

4 cards are drawn from a well-shuffled deck of 52 cards. What is the probability of obtaining 3 diamonds and one spade?


From the employees of a company, 5 persons are selected to represent them in the managing committee of the company. Particulars of five persons are as follows:

S. No. Name Sex Age in years
1. Harish M 30
2. Rohan M 33
3. Sheetal F 46
4. Alis F 28
5. Salim M 41

A person is selected at random from this group to act as a spokesperson. What is the probability that the spokesperson will be either male or over 35 years?


A and B throw a pair of dice. If A throws 9, find B's chance of throwing a higher number.

 

Two unbiased dice are thrown. Find the probability that the sum of the numbers obtained on the two dice is neither a multiple of 2 nor a multiple of 3


If a letter is chosen at random from the English alphabet, find the probability that the letter is a consonant .


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iv)
\[\frac{1}{14}\]
\[\frac{2}{14}\]
\[\frac{3}{14}\]
\[\frac{4}{14}\]
\[\frac{5}{14}\]
\[\frac{6}{14}\]
\[\frac{15}{14}\]

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is numbered 1, 2, 3, 4 or 5


If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?


Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A)


A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are white


A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all one ball is red and two balls are white


In a non-leap year, the probability of having 53 tuesdays or 53 wednesdays is ______.


Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.


6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is ______.


A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is ______.


The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get compartment is 0.96.


The probabilities that a typist will make 0, 1, 2, 3, 4, 5 or more mistakes in typing a report are, respectively, 0.12, 0.25, 0.36, 0.14, 0.08, 0.11. 


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that atleast one will be green?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×