हिंदी

In a Single Throw of Three Dice, Find the Probability of Getting the Same Number on All the Three Dice. - Mathematics

Advertisements
Advertisements

प्रश्न

In a single throw of three dice, find the probability of getting the same number on all the three dice.

उत्तर

If three dices are thrown simultaneously, then all the possible outcomes = 63 = 216
∴ Total number of possible outcome, n(S) = 216
Let A be the event of getting the same number on all the three dices.
Then, the favourable outcomes are as follows:
A = {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5), (6, 6 , 6)}
Number of favourable outcomes, n(A) = 6
Hence, required probability, P(A) = P (same number on all the three dices) = \[\frac{6}{216} = \frac{1}{36}\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Probability - Exercise 33.3 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 33 Probability
Exercise 33.3 | Q 43 | पृष्ठ ४८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A coin is tossed twice, what is the probability that at least one tail occurs?


A die is thrown, find the probability of following events:

  1. A prime number will appear,
  2. A number greater than or equal to 3 will appear,
  3. A number less than or equal to one will appear,
  4. A number more than 6 will appear,
  5. A number less than 6 will appear.

In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]


Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
`1/3` `1/5` `1/15` ....

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that all will be blue?


If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the digits are repeated?


The number lock of a suitcase has 4 wheels, each labelled with ten digits i.e., from 0 to 9. The lock opens with a sequence of four digits with no repeats. What is the probability of a person getting the right sequence to open the suitcase?


A and B throw a pair of dice. If A throws 9, find B's chance of throwing a higher number.

 

Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 10.

 

Two unbiased dice are thrown. Find the probability that the sum of the numbers obtained on the two dice is neither a multiple of 2 nor a multiple of 3


A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that all the three balls are blue balls 


A bag contains 5 red, 6 white and 7 black balls. Two balls are drawn at random. What is the probability that both balls are red or both are black?


If a letter is chosen at random from the English alphabet, find the probability that the letter is a consonant .


In a lottery, a person chooses six different numbers at random from 1 to 20, and if these six numbers match with six number already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game?


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(ii)
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iv)
\[\frac{1}{14}\]
\[\frac{2}{14}\]
\[\frac{3}{14}\]
\[\frac{4}{14}\]
\[\frac{5}{14}\]
\[\frac{6}{14}\]
\[\frac{15}{14}\]

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that all 10 are good


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability thatat least one is defective


Two dice are thrown together. The probability that neither they show equal digits nor the sum of their digits is 9 will be


Three-digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A ∪ B)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)


A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are red


If the letters of the word ASSASSINATION are arranged at random. Find the probability that four S’s come consecutively in the word


If the letters of the word ASSASSINATION are arranged at random. Find the probability that all A’s are not coming together


While shuffling a pack of 52 playing cards, 2 are accidentally dropped. Find the probability that the missing cards to be of different colours ______.


Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is ______.


The probability that a person visiting a zoo will see the giraffee is 0.72, the probability that he will see the bears is 0.84 and the probability that he will see both is 0.52.


The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get compartment is 0.96.


The probabilities that a typist will make 0, 1, 2, 3, 4, 5 or more mistakes in typing a report are, respectively, 0.12, 0.25, 0.36, 0.14, 0.08, 0.11. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×