हिंदी

a square OABC is inscribed in a quadrant OPBQ of a circle. If OA = 20 cm, find the area of the shaded region. - Mathematics

Advertisements
Advertisements

प्रश्न

In fig. 3, a square OABC is inscribed in a quadrant OPBQ of a circle. If OA = 20 cm, find the area of the shaded region. (Use π = 3.14)

उत्तर

Let us join OB.

In ΔOAB:
OB2 = OA2 + AB2  = (20)2 + (20)2 = 2 ×  (20)2

⇒ OB = 20 √2

Radius of the circle, r = `20 sqrt2` cm

`"Area of qudrant OBPQ"=90^@/360^@xx3.14xx(20sqrt2)^2`

`=90/360xx3.14xx(20sqrt2)^2 cm^2`

`=1/4xx3.14xx800 cm^2`

`=628 cm^2`

Area of square OABC = (Side)2 = (20)2 cm2 = 400 cm2

∴ Area of the shaded region = Area of quadrant OPBQ − Area of square OA

                                             = (628 − 400) cm2

                                             = 228 cm2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Areas Related to Circles - Exercise 12.3 [पृष्ठ २३७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 12 Areas Related to Circles
Exercise 12.3 | Q 13 | पृष्ठ २३७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×