हिंदी

A transversal intersects two parallel lines. Prove that the bisectors of any pair of corresponding angles so formed are parallel. - Mathematics

Advertisements
Advertisements

प्रश्न

A transversal intersects two parallel lines. Prove that the bisectors of any pair of corresponding angles so formed are parallel.

योग

उत्तर

Given Two lines AB and CD are parallel and intersected by transversal t at P and Q, respectively. Also, EP and FQ are the bisectors of angles ∠APG and ∠CQP, respectively.


To prove: EP || FQ

Proof: Given, AB || CD

⇒ ∠APG = ∠CQP  ...[Corresponding angles]

⇒ `1/2 ∠APG = 1/2 ∠CQP`  ...[Dividing both sides by 2]

⇒ ∠EPG = ∠FQP  ...[∵ EP and FQ are the bisectors of ∠APG and ∠CQP, respectively]

As these, are the corresponding angles on the transversal line t.

∴ EP || FQ

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Lines & Angles - Exercise 6.4 [पृष्ठ ६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
अध्याय 6 Lines & Angles
Exercise 6.4 | Q 3. | पृष्ठ ६१

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×