हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (हिंदी माध्यम) ९ वीं कक्षा

आकृति में ΔABC मे बिंदु X, Y, Z यह क्रमशः भुजाओं AB, BC तथा AC के मध्यबिंदु है। AB = 5 सेमी, AC = 9 सेमी तथा BC = 11 सेमी, तो XY, YZ, XZ की लंबाई ज्ञात कीजिए। - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

प्रश्न

आकृति में ΔABC मे बिंदु X, Y, Z यह क्रमशः भुजाओं AB, BC तथा AC के मध्यबिंदु है। AB = 5 सेमी, AC = 9 सेमी तथा BC = 11 सेमी, तो XY, YZ, XZ की लंबाई ज्ञात कीजिए।

योग

उत्तर

AB = 5 सेमी, AC = 9 सेमी तथा BC = 11 सेमी      ...(दिया है।)

∆ABC में,

बिंदु X तथा Y क्रमश: रेख AB तथा BC के मध्यबिंदु हैं।     ...(दिया है।)

∴ XY = `1/2` AC       ...(मध्यबिंदु प्रमेय से)

∴ XY = `1/2xx 9 `

∴ XY = 4.5 सेमी

∆ABC में,

बिंदु Y तथा Z क्रमश: रेख BC तथा AC के मध्यबिंदु हैं। ...(दिया है।)

∴ YZ = `1/2` AB      ...(मध्यबिंदु प्रमेय से)

∴ YZ = `1/2xx 5`

∴ YZ = 2.5 सेमी 

∆ABC में,

बिंदु X तथा Z क्रमश: रेख AB तथा AC के मध्यबिंदु हैं। ...(दिया है।)

∴ XZ = `1/2` BC       ...(मध्यबिंदु प्रमेय से)

∴ XZ = `1/2xx 11`

∴ XZ = 5.5 सेमी 

shaalaa.com
त्रिभुज की दो भुजाओं के मध्यबिंदुओं का प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: चतुर्भुज - प्रश्नसंग्रह 5.5 [पृष्ठ ७३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Hindi] 9 Standard Maharashtra State Board
अध्याय 5 चतुर्भुज
प्रश्नसंग्रह 5.5 | Q 1. | पृष्ठ ७३

संबंधित प्रश्न

ABCD एक समचतुर्भुज है और P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु है। दर्शाइए कि चतुर्भुज PQRS एक आयत है।


ABCD एक आयत है, जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। दर्शाइए कि चतुर्भुज PQRS एक समचतुर्भुज है।


एक समांतर चतुर्भुज ABCD में E और F क्रमश: भुजाओं AB और CD के मध्य-बिंदु हैं (देखिए आकृति में)। दर्शाइए कि रेखाखंड AF और EC विकर्ण BD को समत्रिभाजित करते हैं।


दर्शाइए कि किसी चतुर्भुज की सम्मुख भुजाओं के मध्य-बिंदुओं को मिलाने वाले रेखाखंड परस्पर समद्विभाजित करते हैं।


ABC एक त्रिभुज है जिसका कोण C समकोण है। कर्ण AB के मध्य-बिंदु M से होकर BC के समांतर खींची गई रेखा AC को D पर प्रतिच्छेद करती है। दर्शाइए कि

  1. D भुजा AC का मध्य-बिंदु है। 
  2. MD ⊥ AC है। 
  3. CM = MA = `1/2 AB` है।

D, E और F क्रमश: एक समबाहु त्रिभुज ABC की भुजाओं BC, CA और AB के मध्य-बिंदु हैं। दर्शाइए कि ∆DEF भी एक समबाहु त्रिभुज है।


आकृति में `square` PQRS तथा `square` MNRL आयत है। बिंदु M यह PR का मध्यबिंदु है। तो सिद्ध कीजिए कि

(i) SL = LR, (ii) LN = `1/2` SQ 


आकृति में ΔABC समबाहु त्रिभुज है जिसमें बिंदु F, D, E यह क्रमशः भुजा AB, भुजा BC, भुजा AC के मध्यबिंदु हैं तो सिद्ध कीजिए कि ΔFED यह समबाहु त्रिभुज है।


आकृति में रेख PD यह ΔPQR की माध्यिका है। बिंदु T यह PD का मध्यबिंदु है। QT को आगे बढ़ाने पर यह PR को बिंदु M पर प्रतिच्छेदित करता है। तो सिदघ कीजिए कि `"PR"/"PM" = 1/3`

[सूचना: DN || QM खींचें।]


संलग्न आकृति में `square` ABCD यह समलंब चतुर्भुज है। AB || DC, बिंदु M तथा बिंदु N क्रमशः विकर्ण AC तथा विकर्ण DB के मध्यबिंदु है तो सिद्ध कीजिए कि MN || AB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×