Advertisements
Advertisements
प्रश्न
आकृति में, ABCD एक समांतर चतुर्भुज है और BC को एक बिंदु Q तक इस प्रकार बढ़ाया गया है कि AD = CQ है। यदि AQ, DC को P पर काटती है, तो दर्शाइए कि ar(BPC) = ax(DPQ)
[संकेत AC को मिलाइए।]
उत्तर
दिया गया है कि ABCD एक समांतर चतुर्भुज है।
AD || BC और AB ||
(समांतर चतुर्भुज की सम्मुख भुजाएँ एक दूसरे के समानांतर होती हैं)
बिंदु A को बिंदु C से मिलाइए।
ΔAPC और ΔBPC पर विचार करें
ΔAPC और ΔBPC एक ही आधार PC पर और एक ही समानांतर PC और AB के बीच स्थित हैं। इसलिए,
क्षेत्रफल (ΔAPC) = क्षेत्रफल (ΔBPC) ... (1)
चतुर्भुज ACDQ में, यह दिया गया है कि
AD = CQ
चूँकि ABCD एक समांतर चतुर्भुज है,
एडी || BC (एक समांतर चतुर्भुज की सम्मुख भुजाएँ समान्तर होती हैं)
CQ एक रेखाखंड है जो तब प्राप्त होता है जब रेखाखंड BC बनाया जाता है।
∴ AD || CQ
हमारे पास है,
AC = DQ and AC || DQ
अत: ACQD एक समांतर चतुर्भुज है।
DCQ और ACQ पर विचार करें
ये एक ही आधार CQ पर और एक ही समान्तर रेखाओं CQ और AD के बीच स्थित हैं। इसलिए,
क्षेत्रफल (ΔDCQ) = क्षेत्रफल (ΔACQ)
क्षेत्रफल (ΔDCQ) - क्षेत्रफल (ΔPQC) = क्षेत्रफल (ΔACQ) - क्षेत्रफल (ΔPQC)
क्षेत्रफल (ΔDPQ) = क्षेत्रफल (ΔAPC) ... (2)
समीकरण (1) और (2) से, हम प्राप्त करते हैं
क्षेत्रफल (ΔBPC) = क्षेत्रफल (ΔDPQ)
APPEARS IN
संबंधित प्रश्न
दी गई आकृति में, P एक समांतर चतुर्भुज ABCD के अभ्यंतर में स्थित कोई बिंदु है। वो दिखाओ
(i) ar (APB) + ar (PCD) = `1/2`ar (ABCD)
(ii) ar (APD) + ar (PBC) = ar (APB) + ar (PCD)
[संकेत: के माध्यम से। P, AB के समांतर एक रेखा खींचिए]
एक किसान के पास समांतर चतुर्भुज PQRS के रूप में एक खेत था। उसने RS पर कोई बिंदु A लिया और उसे बिंदु P और Q से मिला दिया। क्षेत्र को कितने भागों में विभाजित किया गया है? इन भागों के आकार क्या हैं? किसान गेहूँ और दालों को खेत के बराबर भागों में अलग-अलग बोना चाहता है। उसे कैसे करना चाहिए?
दी गई आकृति में, ΔABC की माध्यिका AD पर स्थित E कोई बिंदु है। दिखाएँ कि ar (ABE) = ar (ACE) है।
ABCDE एक पंचभुज है| B से होकर AC के समांतर खिंची गई रेखा बढाई गई DC को F पर मिलती है | दर्शाइए कि
(i) ar(ACB) = ar(ACF)
(ii) ar(AEDF) = ar(ABCDE)
आकृति में, ABCD, DCFE और ABFE समांतर चतुर्भुज हैं। दर्शाइए कि ar (ADE) = ar (BCF) है।
PQRS एक समांतर चतुर्भुज है जिसका क्षेत्रफल 180 cm2 है तथा A विकर्ण QS पर स्थित कोई बिंदु है। तब ∆ASR का क्षेत्रफल 90 cm2 है।
समांतर चतुर्भुज ABCD का क्षेत्रफल 90 cm2 है। ज्ञात कीजिए : ar (ΔBEF)
एक त्रिभुज ABC की माध्यिकाएँ BE और CF परस्पर बिंदु G पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि ∆GBC का क्षेत्रफल चतुर्भुज AFGE के क्षेत्रफल के बराबर हैं।
निम्नलिखित आकृति में, CD || AE और CY || BA है। सिद्ध कीजिए कि ar (CBX) = ar (AXY) है।
निम्नलिखित आकृति में, ABCDE एक पंचभुज है। AC के समांतर खींची गई BP बढ़ाई गई DC को P पर तथा AD के समांतर खींची गई EQ बढ़ाई गई CD से Q पर मिलती है। सिद्ध कीजिए कि ar (ABCDE) = ar (APQ) है।