Advertisements
Advertisements
Question
आकृति में, ABCD एक समांतर चतुर्भुज है और BC को एक बिंदु Q तक इस प्रकार बढ़ाया गया है कि AD = CQ है। यदि AQ, DC को P पर काटती है, तो दर्शाइए कि ar(BPC) = ax(DPQ)
[संकेत AC को मिलाइए।]
Solution
दिया गया है कि ABCD एक समांतर चतुर्भुज है।
AD || BC और AB ||
(समांतर चतुर्भुज की सम्मुख भुजाएँ एक दूसरे के समानांतर होती हैं)
बिंदु A को बिंदु C से मिलाइए।
ΔAPC और ΔBPC पर विचार करें
ΔAPC और ΔBPC एक ही आधार PC पर और एक ही समानांतर PC और AB के बीच स्थित हैं। इसलिए,
क्षेत्रफल (ΔAPC) = क्षेत्रफल (ΔBPC) ... (1)
चतुर्भुज ACDQ में, यह दिया गया है कि
AD = CQ
चूँकि ABCD एक समांतर चतुर्भुज है,
एडी || BC (एक समांतर चतुर्भुज की सम्मुख भुजाएँ समान्तर होती हैं)
CQ एक रेखाखंड है जो तब प्राप्त होता है जब रेखाखंड BC बनाया जाता है।
∴ AD || CQ
हमारे पास है,
AC = DQ and AC || DQ
अत: ACQD एक समांतर चतुर्भुज है।
DCQ और ACQ पर विचार करें
ये एक ही आधार CQ पर और एक ही समान्तर रेखाओं CQ और AD के बीच स्थित हैं। इसलिए,
क्षेत्रफल (ΔDCQ) = क्षेत्रफल (ΔACQ)
क्षेत्रफल (ΔDCQ) - क्षेत्रफल (ΔPQC) = क्षेत्रफल (ΔACQ) - क्षेत्रफल (ΔPQC)
क्षेत्रफल (ΔDPQ) = क्षेत्रफल (ΔAPC) ... (2)
समीकरण (1) और (2) से, हम प्राप्त करते हैं
क्षेत्रफल (ΔBPC) = क्षेत्रफल (ΔDPQ)
APPEARS IN
RELATED QUESTIONS
एक किसान के पास समांतर चतुर्भुज PQRS के रूप में एक खेत था। उसने RS पर कोई बिंदु A लिया और उसे बिंदु P और Q से मिला दिया। क्षेत्र को कितने भागों में विभाजित किया गया है? इन भागों के आकार क्या हैं? किसान गेहूँ और दालों को खेत के बराबर भागों में अलग-अलग बोना चाहता है। उसे कैसे करना चाहिए?
दी गई आकृति में, ar(DRC) = ar(DPC) है और ar(BDP) = ar(ARC) है | दर्शाइए कि दोनों चतुर्भुज ABCD और DCPR समलंब है |
आकृति में, ABC और BDE दो समबाहु त्रिभुज इस प्रकार हैं कि D, भुजा BC का मध्य-बिंदु है। यदि AE भुजा BC को F पर प्रतिच्छेद करती है, तो दर्शाइए कि
(i) ar (BDE) = `1/4` ar (ABC)
(ii) ar (BDE) = `1/2` ar (BAE)
(iii) ar (ABC) = 2 ar (BEC)
(iv) ar (BFE) = ar (AFD)
(v) ar (BFE) = 2 ar (FED)
(vi) ar (FED) = `1/8`ar (AFC)
[संकेत : EC और AD को मिलाइए। दिखाओ कि BE || AC and DE || AB, आदि]
P और Q क्रमशः त्रिभुज ABC की भुजाओं AB और BC के मध्य-बिंदु हैं और R, रेखाखंड AP का मध्य-बिंदु है, दर्शाइए कि
(i) ar(PRQ) = `1/2` ar(ARC)
(ii) ar(RQC) = `3/8` ar(ABC)
(iii) ar(PBQ) = ar(ARC)
ABCD एक वर्ग है। E और F क्रमश : BC और CD भुजाओं के मध्य-बिंदु हैं। यदि R रेखाखंड EF का मध्य-बिंदु है (आकृति), तो सिद्ध कीजिए कि ar (AER) = ar (AFR) है।
किसी समांतर चतुर्भुज ABCD की भुजा BC पर कोई बिंदु E लिया जाता है। AE और DC को बढ़ाया जाता है जिससे वे F पर मिलती हैं। सिद्ध कीजिए कि ar (ADF) = ar (ABFC) है।
निम्नलिखित आकृति में, CD || AE और CY || BA है। सिद्ध कीजिए कि ar (CBX) = ar (AXY) है।
त्रिभुज ABC में यदि L और M क्रमश : AB और AC भुजाओं पर इस प्रकार स्थित बिंदु हैं कि LM || BC है। सिद्ध कीजिए कि ar (LOB) = ar (MOC) है।
निम्नलिखित आकृति में, ABCDE एक पंचभुज है। AC के समांतर खींची गई BP बढ़ाई गई DC को P पर तथा AD के समांतर खींची गई EQ बढ़ाई गई CD से Q पर मिलती है। सिद्ध कीजिए कि ar (ABCDE) = ar (APQ) है।
निम्नलिखित आकृति में, X और Y क्रमश : AC और AB के मध्य-बिंदु हैं, QP || BC और CYQ और BXP सरल रेखाएँ हैं। सिद्ध कीजिए कि ar (ABP) = ar (ACQ) हैं।