English

निम्नलिखित आकृति में, ABCDE एक पंचभुज है। AC के समांतर खींची गई BP बढ़ाई गई DC को P पर तथा AD के समांतर खींची गई EQ बढ़ाई गई CD से Q पर मिलती है। सिद्ध कीजिए कि ar (ABCDE) = ar (APQ) है। - Mathematics (गणित)

Advertisements
Advertisements

Question

निम्नलिखित आकृति में, ABCDE एक पंचभुज है। AC के समांतर खींची गई BP बढ़ाई गई DC को P पर तथा AD के समांतर खींची गई EQ बढ़ाई गई CD से Q पर मिलती है। सिद्ध कीजिए कि ar (ABCDE) = ar (APQ) है।

Sum

Solution

दिया गया है - ABCDE एक पंचभुज है।

BP || AC और EQ || AD

सिद्ध करना है - ar (ABCDE) = ar (APQ)

उपपत्ति - हम जानते हैं कि, समान आधार और समान समांतर रेखाओं के बीच बने त्रिभुज क्षेत्रफल में बराबर होते हैं।

यहाँ, ΔADQ और ΔADE एक ही आधार AD और एक ही समांतर रेखाओं AD और EQ के बीच स्थित हैं।

इसलिए, ar (ΔADQ) = ar (ΔADE)   ...(i)

इसी प्रकार, ΔACP और ΔACB एक ही आधार AC और समान समांतर रेखाओं AC और BP के बीच स्थित हैं।

इसलिए, ar (ΔACP) = ar (ΔACB)  ...(ii)

समीकरण (i) और (ii) को जोड़ने पर, हम पाते हैं।

ar (ΔADQ) + ar (ΔACP) = ar (ΔADE) + ar (ΔACB)

दोनों पक्षों में ar (ΔACD) जोड़ने पर, हम पाते हैं।

ar (ΔADQ) + ar (ΔACP) + ar (ΔACD) = ar (ΔADE) + ar (ΔACB) + ar (ΔACD)

⇒ ar (ΔAPQ) = ar (ABCDE)

अत: सिद्ध हुआ।

shaalaa.com
एक ही आधार और एक ही समांतर रेखाओं के बीच समांतर चतुर्भुज
  Is there an error in this question or solution?
Chapter 9: समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल - प्रश्नावली 9.4 [Page 96]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 9 समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल
प्रश्नावली 9.4 | Q 7. | Page 96

RELATED QUESTIONS

दी गई आकृति में, P एक समांतर चतुर्भुज ABCD के अभ्यंतर में स्थित कोई बिंदु है। वो दिखाओ

(i) ar (APB) + ar (PCD) = `1/2`ar (ABCD)

(ii) ar (APD) + ar (PBC) = ar (APB) + ar (PCD)

[संकेत: के माध्यम से। P, AB के समांतर एक रेखा खींचिए]


दर्शाइए कि समांतर चतुर्भुज के दोनों विकर्ण उसे बराबर क्षेत्रफलों वाले चार त्रिभुजों में बाँटते हैं।


बिंदु D और E क्रमश: ΔABC कि भुजाओं AB और AC पर इस प्रकार स्थित हैं कि ar(DBC) = ar(EBC) है  दर्शाइए कि DE || BC है |


समान्तर चतुर्भुज ABCD की एक भुजा AB को एक बिंदु P तक बढाया गया है | A से होकर CP के समांतर खिंची गई रेखा बढाई गई CB को Q पर मिलती है और फिर समांतर चतुर्भुज PBQR को पूरा किया गया है | दर्शाइए कि ar(ABCD) = ar(PBQR) है |

[संकेत: AC और PQ को मिलाइए अब ar(ACQ) और ar(APQ) कि तुलना कीजिये]


गाँव के एक निवासी इतवारी के पास एक चतुर्भुजाकार भूखंड था। उस गाँव की ग्राम पंचायत ने उसके भूखंड के एक कोने से उसका कुछ भाग लेने का निर्णय लिया ताकि वहाँ एक स्वास्थ्य केन्द्र का निर्माण कराया जा सके। इतवारी इस प्रस्ताव को इस प्रतिबन्ध् के साथ स्वीकार कर लेता है कि उसे इस भाग के बदले उसी भूखंड के संलग्न एक भाग ऐसा दे दिया जाए कि उसका भूखंड त्रिभुजाकार हो जाए। स्पष्ट कीजिए कि इस प्रस्ताव को किस प्रकार कार्यान्वित किया जा सकता है।


आकृति में, ABCD एक समांतर चतुर्भुज है और BC को एक बिंदु Q तक इस प्रकार बढ़ाया गया है कि AD = CQ है। यदि AQ, DC को P पर काटती है, तो दर्शाइए कि ar(BPC) = ax(DPQ)

[संकेत AC को मिलाइए।]


P और Q क्रमशः त्रिभुज ABC की भुजाओं AB और BC के मध्य-बिंदु हैं और R, रेखाखंड AP का मध्य-बिंदु है, दर्शाइए कि

(i) ar(PRQ) = `1/2` ar(ARC)

(ii) ar(RQC) = `3/8` ar(ABC)

(iii) ar(PBQ) = ar(ARC)


किसी समांतर चतुर्भुज ABCD की भुजा BC पर कोई बिंदु E लिया जाता है। AE और DC को बढ़ाया जाता है जिससे वे F पर मिलती हैं। सिद्ध कीजिए कि ar (ADF) = ar (ABFC) है।


एक समांतर चतुर्भुज ABCD के विकर्ण बिंदु O पर प्रतिच्छेद करते हैं। O से होकर एक रेखा खींची जाती है, जो AD को P और BC से Q पर मिलती है। दर्शाइए कि PQ इस समांतर चतुर्भुज ABCD को बराबर क्षेत्रफल वाले दो भागों में विभाजित करता है।


त्रिभुज ABC में यदि L और M क्रमश : AB और AC भुजाओं पर इस प्रकार स्थित बिंदु हैं कि LM || BC है। सिद्ध कीजिए कि ar (LOB) = ar (MOC) है। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×