Advertisements
Advertisements
Question
दी गई आकृति में, P एक समांतर चतुर्भुज ABCD के अभ्यंतर में स्थित कोई बिंदु है। वो दिखाओ
(i) ar (APB) + ar (PCD) = `1/2`ar (ABCD)
(ii) ar (APD) + ar (PBC) = ar (APB) + ar (PCD)
[संकेत: के माध्यम से। P, AB के समांतर एक रेखा खींचिए]
Solution
(i) आइए हम एक रेखाखंड EF खींचते हैं, जो बिंदु P से होकर जाता है और रेखाखंड AB के समानांतर है।
समांतर चतुर्भुज ABCD में,
∴ AD || BC (निर्माण द्वारा) ... (1)
ABCD एक समांतर चतुर्भुज है।
एडी || ईसा पूर्व (एक समांतर चतुर्भुज के विपरीत पक्ष)
⇒ AE || BF ... (2)
समीकरण (1) और (2) से, हम प्राप्त करते हैं
AB || EF और AE || BF
अत: चतुर्भुज ABFE एक समांतर चतुर्भुज है।
यह देखा जा सकता है कि APB और समांतर चतुर्भुज ABFE एक ही आधार AB पर और समान समानांतर रेखाओं AB और EF के बीच स्थित हैं।
∴ क्षेत्रफल (ΔAPB) = 1/2क्षेत्र (ABFE) ... (3)
इसी प्रकार, ΔPCD और समांतर चतुर्भुज EFCD के लिए,
क्षेत्रफल (ΔPCD) = 1/2क्षेत्र (EFCD) ... (4)
समीकरण (3) और (4) को जोड़ने पर, हम प्राप्त करते हैं
क्षेत्रफल (ΔAPB) + क्षेत्रफल (ΔPCD) = 1/2[क्षेत्रफल (ABFE) + क्षेत्रफल (EFCD)]
क्षेत्रफल (ΔAPB) + क्षेत्रफल (ΔPCD) = 1/2क्षेत्र (ABCD) ........(5)
(ii)
आइए हम एक रेखा खंड MN खींचते हैं, जो बिंदु P से होकर जाता है और रेखा खंड AD के समानांतर है।
समांतर चतुर्भुज ABCD में,
MN || AD (निर्माण द्वारा) ... (6)
ABCD एक समांतर चतुर्भुज है।
एबी || डीसी (एक समांतर चतुर्भुज के विपरीत पक्ष)
AM || DN ... (7)
समीकरण (6) और (7) से, हम प्राप्त करते हैं
MN || AD and AM || DN
अत: चतुर्भुज AMND एक समांतर चतुर्भुज है।
यह देखा जा सकता है कि ΔAPD और समांतर चतुर्भुज AMND एक ही आधार AD पर और समान समानांतर रेखाओं AD और MN के बीच स्थित हैं।
∴ क्षेत्रफल (ΔAPD) = `1/2` क्षेत्र (AMND) ... (8)
इसी तरह, ΔPCB और समानांतर चतुर्भुज MNCB, के लिए,
क्षेत्रफल (ΔPCB) = `1/2` क्षेत्र (MNCB) ... (9)
समीकरण (8) और (9) को जोड़ने पर, हम प्राप्त करते हैं
क्षेत्रफल (ΔAPD) + क्षेत्र (ΔPCB) = `1/2` [क्षेत्रफल (AMND) + क्षेत्रफल (MNCB)]
क्षेत्रफल (ΔAPD) + क्षेत्रफल (ΔPCB) = `1/2` क्षेत्र (ABCD) ............(10)
समीकरणों (5) और (10) की तुलना करने पर, हम प्राप्त करते हैं
क्षेत्रफल (ΔAPD) + क्षेत्रफल (ΔPBC) = क्षेत्रफल (ΔAPB) + क्षेत्रफल (ΔPCD)
APPEARS IN
RELATED QUESTIONS
दी गई आकृति में, ΔABC की माध्यिका AD पर स्थित E कोई बिंदु है। दिखाएँ कि ar (ABE) = ar (ACE) है।
दर्शाइए कि समांतर चतुर्भुज के दोनों विकर्ण उसे बराबर क्षेत्रफलों वाले चार त्रिभुजों में बाँटते हैं।
आकृति में, ABC और BDE दो समबाहु त्रिभुज इस प्रकार हैं कि D, भुजा BC का मध्य-बिंदु है। यदि AE भुजा BC को F पर प्रतिच्छेद करती है, तो दर्शाइए कि
(i) ar (BDE) = `1/4` ar (ABC)
(ii) ar (BDE) = `1/2` ar (BAE)
(iii) ar (ABC) = 2 ar (BEC)
(iv) ar (BFE) = ar (AFD)
(v) ar (BFE) = 2 ar (FED)
(vi) ar (FED) = `1/8`ar (AFC)
[संकेत : EC और AD को मिलाइए। दिखाओ कि BE || AC and DE || AB, आदि]
चतुर्भुज ABCD के विकर्ण AC और BD एक दूसरे को P पर काटते हैं। दर्शाइए कि ar (APB) × ar (CPD) = ar (APD) × ar (BPC) है।
[संकेत : A और C से BD पर लंब खींचिए।]
आकृति में, ABC एक समकोण त्रिभुज है जिसका कोण A समकोण है। BCED, ACFG और ABMN क्रमशः BC, CA और AB भुजाओं पर वर्ग हैं। रेखा खंड AX ⊥ DE, भुजा BC से Y पर मिलता है। दर्शाइए कि:
(i) ΔMBC ≅ ΔABD
(ii) ar (BYXD) = 2 ar(MBC)
(iii) ar (BYXD) = ar(ABMN)
(iv) ΔFCB ≅ ΔACE
(v) ar(CYXE) = 2 ar(FCB)
(vi) ar (CYXE) = ar(ACFG)
(vii) ar (BCED) = ar(ABMN) + ar(ACFG)
नोट: परिणाम (vii) पाइथागोरस का प्रसिद्ध प्रमेय है। आप कक्षा X में इस प्रमेय के सरल प्रमाण के बारे में जानेंगे।
ABCD एक वर्ग है। E और F क्रमश : BC और CD भुजाओं के मध्य-बिंदु हैं। यदि R रेखाखंड EF का मध्य-बिंदु है (आकृति), तो सिद्ध कीजिए कि ar (AER) = ar (AFR) है।
किसी समांतर चतुर्भुज ABCD की भुजा BC पर कोई बिंदु E लिया जाता है। AE और DC को बढ़ाया जाता है जिससे वे F पर मिलती हैं। सिद्ध कीजिए कि ar (ADF) = ar (ABFC) है।
ABCD एक समलंब है, जिसमें AB || DC, DC = 30 cm और AB = 50 cm है। यदि X और Y क्रमश : AD और BC के मध्य-बिंदु हैं, तो सिद्ध कीजिए कि ar (DCYX) = `7/9` ar (XYBA) है।
निम्नलिखित आकृति में, ABCDE एक पंचभुज है। AC के समांतर खींची गई BP बढ़ाई गई DC को P पर तथा AD के समांतर खींची गई EQ बढ़ाई गई CD से Q पर मिलती है। सिद्ध कीजिए कि ar (ABCDE) = ar (APQ) है।
निम्नलिखित आकृति में, X और Y क्रमश : AC और AB के मध्य-बिंदु हैं, QP || BC और CYQ और BXP सरल रेखाएँ हैं। सिद्ध कीजिए कि ar (ABP) = ar (ACQ) हैं।