English

गाँव के एक निवासी इतवारी के पास एक चतुर्भुजाकार भूखंड था। उस गाँव की ग्राम पंचायत ने उसके भूखंड के एक कोने से उसका कुछ भाग लेने का निर्णय लिया - Mathematics (गणित)

Advertisements
Advertisements

Question

गाँव के एक निवासी इतवारी के पास एक चतुर्भुजाकार भूखंड था। उस गाँव की ग्राम पंचायत ने उसके भूखंड के एक कोने से उसका कुछ भाग लेने का निर्णय लिया ताकि वहाँ एक स्वास्थ्य केन्द्र का निर्माण कराया जा सके। इतवारी इस प्रस्ताव को इस प्रतिबन्ध् के साथ स्वीकार कर लेता है कि उसे इस भाग के बदले उसी भूखंड के संलग्न एक भाग ऐसा दे दिया जाए कि उसका भूखंड त्रिभुजाकार हो जाए। स्पष्ट कीजिए कि इस प्रस्ताव को किस प्रकार कार्यान्वित किया जा सकता है।

Sum

Solution

माना चतुर्भुज ABCD क्षेत्र की मूल आकृति है।

प्रस्ताव को निम्नानुसार लागू किया जा सकता है।

विकर्ण BD को मिलाइए और बिंदु A से होकर BD के समांतर एक रेखा खींचिए। इसे मिलने दें

ABCD की विस्तारित भुजा CD बिंदु E पर है। BE और AD को मिलाइए। उन्हें एक दूसरे को O पर काटने दें। फिर, AOB के हिस्से को मूल क्षेत्र से काटा जा सकता है ताकि क्षेत्र का नया आकार BCE हो। (रेखा - चित्र देखें)

हमें यह सिद्ध करना है कि AOB का क्षेत्रफल (जिस भाग को स्वास्थ्य केंद्र बनाने के लिए काटा गया था) DEO के क्षेत्रफल के बराबर है) मूल क्षेत्र के)

यह देखा जा सकता है कि ΔDEB और ΔDAB एक ही आधार BD पर स्थित हैं और समान समानांतर BD और AE के बीच स्थित हैं।

∴ क्षेत्रफल (ΔDEB) = क्षेत्रफल (ΔDAB)

⇒ क्षेत्र (ΔDEB) - क्षेत्र (ΔDOB) = क्षेत्र (ΔDAB) - क्षेत्र (ΔDOB)

⇒ क्षेत्रफल (ΔDEO) = क्षेत्रफल (ΔAOB)

shaalaa.com
एक ही आधार और एक ही समांतर रेखाओं के बीच समांतर चतुर्भुज
  Is there an error in this question or solution?
Chapter 9: समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल - प्रश्नावली 9.3 [Page 197]

APPEARS IN

NCERT Mathematics [Hindi] Class 9
Chapter 9 समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल
प्रश्नावली 9.3 | Q 12. | Page 197

RELATED QUESTIONS

P और Q एक समांतर चतुर्भुज ABCD की भुजाओं DC और AD पर स्थित कोई दो बिंदु हैं। दर्शाइए कि ar (APB) = ar (BQC) है।


एक त्रिभुज ΔABC में, E माध्यिका AD का मध्य-बिंदु है। दर्शाइए कि ar (BED) = `1/4`ar (ABC) है।


दर्शाइए कि समांतर चतुर्भुज के दोनों विकर्ण उसे बराबर क्षेत्रफलों वाले चार त्रिभुजों में बाँटते हैं।


समांतर चतुर्भुज ABCD और आयत ABEF एक ही आधार पर स्थित हैं और उनके क्षेत्रफल बराबर हैं। दर्शाइए की समांतर चतुर्भुज का परिमाप आयत के परिमाप से अधिक है।


आकृति में, ABCD एक समांतर चतुर्भुज है और BC को एक बिंदु Q तक इस प्रकार बढ़ाया गया है कि AD = CQ है। यदि AQ, DC को P पर काटती है, तो दर्शाइए कि ar(BPC) = ax(DPQ)

[संकेत AC को मिलाइए।]


चतुर्भुज ABCD के विकर्ण AC और BD एक दूसरे को P पर काटते हैं। दर्शाइए कि ar (APB) × ar (CPD) = ar (APD) × ar (BPC) है।

[संकेत : A और C से BD पर लंब खींचिए।]


किसी समांतर चतुर्भुज ABCD की भुजा BC पर कोई बिंदु E लिया जाता है। AE और DC को बढ़ाया जाता है जिससे वे F पर मिलती हैं। सिद्ध कीजिए कि ar (ADF) = ar (ABFC) है।


एक समांतर चतुर्भुज ABCD के विकर्ण बिंदु O पर प्रतिच्छेद करते हैं। O से होकर एक रेखा खींची जाती है, जो AD को P और BC से Q पर मिलती है। दर्शाइए कि PQ इस समांतर चतुर्भुज ABCD को बराबर क्षेत्रफल वाले दो भागों में विभाजित करता है।


निम्नलिखित आकृति में, CD || AE और CY || BA है। सिद्ध कीजिए कि ar (CBX) = ar (AXY) है।


निम्नलिखित आकृति में, ABCDE एक पंचभुज है। AC के समांतर खींची गई BP बढ़ाई गई DC को P पर तथा AD के समांतर खींची गई EQ बढ़ाई गई CD से Q पर मिलती है। सिद्ध कीजिए कि ar (ABCDE) = ar (APQ) है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×