Advertisements
Advertisements
प्रश्न
आकृति में BD और CE परस्पर बिंद P पर प्रतिच्छेद करते हैंक्या ΔPBC ~ ΔPDE है? क्यों?
उत्तर
∆PBC और ∆PDE में,
∠BPC = ∠EPD ...[शीर्षाभिमुख कोण]
अब, `("PB")/("PD") = 5/10 = 1/2` ...(i)
और `("PC")/("PE") = 6/12 = 1/2` ...(ii)
समीकरण (i) और (ii) से,
`("PB")/("PD") = ("PC")/("PE")`
चूँकि, ∆PBC का एक कोण ∆PDE के एक कोण के बराबर है और इन कोणों सहित भुजाएँ समानुपाती हैं, इसलिए दोनों त्रिभुज समरूप हैं।
इसलिए, एसएएस समानता मानदंड द्वारा ∆PBC ~ ∆PDE।
APPEARS IN
संबंधित प्रश्न
आकृति में, DE || BC है। EC ज्ञात कीजिए:
आकृति में क्रमशः OP, OQ और OR पर स्थित बिंदु A, B और C इस प्रकार हैं कि AB || PQ और AC || PR है। दर्शाइए कि BC || QR है।
एक चतुर्भुज ABCD के विकर्ण परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं कि `("AO")/("BO") = ("CO")/("DO")` है। दर्शाइए कि ABCD एक समलंब है।
आकृति में PS कोण QPR का समद्विभाजक है। सिद्ध कीजिए कि `"QS"/"SR" = "PQ"/"PR"` है।
यदि ∆ABC ~ ∆QRP, `(ar(ABC))/(ar(PQR)) = 9/4`, AB = 18 cm और BC = 15 cm है, तो PR बराबर ______ है।
ΔDEF ~ ΔRPQ दिया है। क्या कहना सत्य है कि ∠D = ∠R और ∠F = ∠P? क्यों?
किसी त्रिभुज PQR की भुजाओं PQ और PR पर क्रमश : बिंद A और B इस प्रकार स्थित हैं कि PQ = 12.5 cm, PA = 5 cm, BR = 6 cm और PB = 4 cm हैं। क्या AB || QR है? अपने उत्तर के लिए कारण दीजिए।
दो समरूप त्रिभुजों के संगत शीर्षलंबों का अनुपात `3/5` है। क्या यह कहना सही है कि इन त्रिभुजों के क्षेत्रफलों का अनपात `6/5` है? क्यों?
आकृति में, यदि PQRS एक समांतर चतुर्भुज है तथा AB || PS है, तो सिद्ध कीजिए कि OC || SR है।
सिद्ध कीजिए कि समबाहु त्रिभुज के सभी कोण न्यून कोण होते हैं।