हिंदी

आकृति में PQR एक समकोण त्रिभुज है, जिसका ∠Q समकोण है तथा QS ⊥ PR है। यदि PQ = 6 cm और PS = 4 cm है, तो QS, RS और QR ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

आकृति में PQR एक समकोण त्रिभुज है, जिसका ∠Q समकोण है तथा QS ⊥ PR है। यदि PQ = 6 cm और PS = 4 cm है, तो QS, RS और QR ज्ञात कीजिए। 

योग

उत्तर

दिया गया है,

ΔPQR जिसमें ∠Q = 90°,

QS ⊥ PR और PQ = 6 cm,

PS = 4 cm

ΔSQP और ΔSRQ में,

∠PSQ = ∠RSQ  ...[प्रत्येक 90° के बराबर]

∠SPQ = ∠SQR   ...[प्रत्येक 90° – ∠R के बराबर है]

∴ ΔSQP ∼ ΔSRQ  ...[AA समानता मानदंड द्वारा]

फिर, `("SQ")/("PS") = ("SR")/("SQ")`

⇒ SQ2 = PS × SR   ...(i)

समकोण ΔPSQ में,

PQ2 = PS2 + QS2   ...[पाइथागोरस प्रमेय द्वारा]

⇒ (6)2 = (4)2 + QS2

⇒ 36 = 16 + QS2

⇒ QS2 = 36 – 16 = 20

∴ QS = `sqrt(20) = 2sqrt(5)` cm

QS का मान समीकरण (i) में रखने पर, हम पाते हैं, 

`(2sqrt(5))^2` = 4 × SR

⇒ SR = `(4 xx 5)/4` = 5 cm

समकोण ΔQSR में,

QR2 = QS2 + SR2

⇒ QR2 = `(2sqrt(5))^2 + (5)^2`

⇒ QR2 = 20 + 25

∴ QR = `sqrt(45) = 3sqrt(5)` cm

अतः, QS = `2sqrt(5)` cm, RS = 5 cm और QR = `3sqrt(5)` cm।

shaalaa.com
पाइथागोरस प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: त्रिभुज - प्रश्नावली 6.4 [पृष्ठ ७६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 6 त्रिभुज
प्रश्नावली 6.4 | Q 10. | पृष्ठ ७६

संबंधित प्रश्न

कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।

3 cm, 8 cm, 6 cm


18 m ऊंचे एक ऊर्ध्वाधर खंभे के ऊपरी सिरे से एक तार का एक सिरा जुड़ा हुआ है तथा तार का दूसरा सिरा एक खूँटे से जुड़ा हुआ है। खंभे के आधार से खूँटे को कितनी दूरी पर गाड़ा जाए कि तार तना रहे जबकि तार की लंबाई 24 m है।


किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलंब के वर्ग के चार गुने के बराबर होता है।


सही उत्तर चुनकर उसका औचित्य दीजिए: ∆ABC में, AB = `6sqrt3` cm, AC = 12 cm और BC = 6 cm है। कोण B है: ______


आकृति में ABC एक त्रिभुज है जिसमें ∠ABC > 90° हैं तथा AD ⊥ CB है। सिद्ध कीजिए कि AC2 = AB2 + BC2 + 2 BC.BD है।

 


क्या भुजाओं 25 cm, 5 cm और 24 cm वाला त्रिभुज एक समकोण त्रिभुज है? अपने उत्तर के लिए कारण दीजिए।


भुजा 8 cm वाले एक समबाहु त्रिभुज का शीर्षलंब ज्ञात कीजिए।


शहर A से शहर B तक जाने के लिए एक मार्ग शहर C से होकर इस प्रकार जाता है कि AC ⊥ CB है, AC = 2x km और CB = 2(x + 7) km है। दोनों शहरों A और B को सीधा जोड़ने के लिए, एक 26 km लंबे राजमार्ग बनाने की एक योजना है। ज्ञात कीजिए कि राजमार्ग बन जाने के बाद, शहर A से शहर B तक जाने में कितनी दूरी कम चलनी पड़ेगी। 


∆PQR में, PD ⊥ QR इस प्रकार है कि D भुजा QR पर स्थित है। यदि PQ = a, PR = b, QD = c और DR = d है, तो सिद्ध कीजिए कि (a + b)(a – b) = (c + d)(c – d) है।


आकृति में, रेखाखंड DF त्रिभुज ABC की भुजा AC को बिंदु E पर इस प्रकार प्रतिच्छेद करता है कि E, भुजा AC का मध्य-बिंदु है और ∠AEF = ∠AFE है। सिद्ध कीजिए कि `(BD)/(CD) = (BF)/(CE)` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×