Advertisements
Advertisements
Question
आकृति में PQR एक समकोण त्रिभुज है, जिसका ∠Q समकोण है तथा QS ⊥ PR है। यदि PQ = 6 cm और PS = 4 cm है, तो QS, RS और QR ज्ञात कीजिए।
Solution
दिया गया है,
ΔPQR जिसमें ∠Q = 90°,
QS ⊥ PR और PQ = 6 cm,
PS = 4 cm
ΔSQP और ΔSRQ में,
∠PSQ = ∠RSQ ...[प्रत्येक 90° के बराबर]
∠SPQ = ∠SQR ...[प्रत्येक 90° – ∠R के बराबर है]
∴ ΔSQP ∼ ΔSRQ ...[AA समानता मानदंड द्वारा]
फिर, `("SQ")/("PS") = ("SR")/("SQ")`
⇒ SQ2 = PS × SR ...(i)
समकोण ΔPSQ में,
PQ2 = PS2 + QS2 ...[पाइथागोरस प्रमेय द्वारा]
⇒ (6)2 = (4)2 + QS2
⇒ 36 = 16 + QS2
⇒ QS2 = 36 – 16 = 20
∴ QS = `sqrt(20) = 2sqrt(5)` cm
QS का मान समीकरण (i) में रखने पर, हम पाते हैं,
`(2sqrt(5))^2` = 4 × SR
⇒ SR = `(4 xx 5)/4` = 5 cm
समकोण ΔQSR में,
QR2 = QS2 + SR2
⇒ QR2 = `(2sqrt(5))^2 + (5)^2`
⇒ QR2 = 20 + 25
∴ QR = `sqrt(45) = 3sqrt(5)` cm
अतः, QS = `2sqrt(5)` cm, RS = 5 cm और QR = `3sqrt(5)` cm।
APPEARS IN
RELATED QUESTIONS
कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।
3 cm, 8 cm, 6 cm
कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।
50 cm, 80 cm, 100 cm
कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।
13 cm, 12 cm, 5 cm
आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि
AC2 = BC.DC
एक हवाई जहाज एक हवाई अड्डे से उत्तर की ओर 1000 km/hr की चाल से उड़ता है। इसी समय एक अन्य हवाई जहाज उसी हवाई अड्डे से पश्चिम की ओर 1200 km/hr की चाल से उड़ता है। `1 1/2` घंटे के बाद दोनों हवाई जहाजों के बीच की दूरी कितनी होगी?
एक त्रिभुज ABC जिसका कोण C समकोण है, की भुजाओं CA और CB पर क्रमशः बिंदु D और E स्थित हैं। सिद्ध कीजिए कि AE2 + BD2 = AB2 + DE2 है।
किसी त्रिभुज ABC के शीर्ष A से BC पर डाला गया लम्ब BC को बिंदु D पर इस प्रकार प्रतिच्छेद करता है कि DB = 3CD है (देखिए आकृति) सिद्ध कीजिए कि 2AB2 = 2AC2 + BC2 है।
आकृति में ABC एक त्रिभुज है जिसमें ∠ABC < 90° हैं तथा AD ⊥ BC है। सिद्ध कीजिए कि AC2 = AB2 + BC2 – 2BC.BD है।
आकृति में AD त्रिभुज ABC की एक माध्यिका है तथा AM ⊥ BC है। सिद्ध कीजिए कि
(i) AC2 = AD2 + BC.DM + `("BC"/2)^2`
(ii) AB2 = AD2 – BC.DM + `("BC"/2)^2`
(ii) AC2 + AB2 = 2AD2 + `1/2` BC2
सिद्ध कीजिए कि एक समकोण त्रिभुज के कर्ण पर खींचे गए अर्धवृत्त का क्षेत्रफल अन्य दो भुजाओं पर खींचे गए अर्धवृत्तों के क्षेत्रफलों के योग के बराबर होता है।