मराठी

आकृति में PQR एक समकोण त्रिभुज है, जिसका ∠Q समकोण है तथा QS ⊥ PR है। यदि PQ = 6 cm और PS = 4 cm है, तो QS, RS और QR ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

आकृति में PQR एक समकोण त्रिभुज है, जिसका ∠Q समकोण है तथा QS ⊥ PR है। यदि PQ = 6 cm और PS = 4 cm है, तो QS, RS और QR ज्ञात कीजिए। 

बेरीज

उत्तर

दिया गया है,

ΔPQR जिसमें ∠Q = 90°,

QS ⊥ PR और PQ = 6 cm,

PS = 4 cm

ΔSQP और ΔSRQ में,

∠PSQ = ∠RSQ  ...[प्रत्येक 90° के बराबर]

∠SPQ = ∠SQR   ...[प्रत्येक 90° – ∠R के बराबर है]

∴ ΔSQP ∼ ΔSRQ  ...[AA समानता मानदंड द्वारा]

फिर, `("SQ")/("PS") = ("SR")/("SQ")`

⇒ SQ2 = PS × SR   ...(i)

समकोण ΔPSQ में,

PQ2 = PS2 + QS2   ...[पाइथागोरस प्रमेय द्वारा]

⇒ (6)2 = (4)2 + QS2

⇒ 36 = 16 + QS2

⇒ QS2 = 36 – 16 = 20

∴ QS = `sqrt(20) = 2sqrt(5)` cm

QS का मान समीकरण (i) में रखने पर, हम पाते हैं, 

`(2sqrt(5))^2` = 4 × SR

⇒ SR = `(4 xx 5)/4` = 5 cm

समकोण ΔQSR में,

QR2 = QS2 + SR2

⇒ QR2 = `(2sqrt(5))^2 + (5)^2`

⇒ QR2 = 20 + 25

∴ QR = `sqrt(45) = 3sqrt(5)` cm

अतः, QS = `2sqrt(5)` cm, RS = 5 cm और QR = `3sqrt(5)` cm।

shaalaa.com
पाइथागोरस प्रमेय
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: त्रिभुज - प्रश्नावली 6.4 [पृष्ठ ७६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 6 त्रिभुज
प्रश्नावली 6.4 | Q 10. | पृष्ठ ७६

संबंधित प्रश्‍न

ABC एक समद्विबाहु त्रिभुज है जिसका कोण C समकोण है। सिद्ध कीजिए कि AB2 = 2AC2 है।


आकृति में ∆ABC के अभ्यंतर में स्थित कोई बिंदु O है तथा OD ⊥ BC, OE ⊥ AC और OF ⊥ AB है। दर्शाइए कि

  1. OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
  2. AF2 + OB2 + CE2 = AE2 + CD2 + BF2

 


एक हवाई जहाज एक हवाई अड्डे से उत्तर की ओर 1000 km/hr की चाल से उड़ता है। इसी समय एक अन्य हवाई जहाज उसी हवाई अड्डे से पश्चिम की ओर 1200 km/hr की चाल से उड़ता है। `1 1/2` घंटे के बाद दोनों हवाई जहाजों के बीच की दूरी कितनी होगी?


दो खंभे जिनकी ऊँचाइयाँ 6 m और 11 m हैं तथा ये समतल भूमि पर खड़े हैं। यदि इनके पाद बिंदुओं के बीच की दूरी 12 m है तो इनके ऊपरी सिरों के बीच की दूरी ज्ञात कीजिए।


एक त्रिभुज ABC जिसका कोण C समकोण है, की भुजाओं CA और CB पर क्रमशः बिंदु D और E स्थित हैं। सिद्ध कीजिए कि AE2 + BD2 = AB2 + DE2 है।


किसी समबाहु त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि BD = `1/3` BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है।


किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलंब के वर्ग के चार गुने के बराबर होता है।


क्या भुजाओं 25 cm, 5 cm और 24 cm वाला त्रिभुज एक समकोण त्रिभुज है? अपने उत्तर के लिए कारण दीजिए।


10 m लंबी एक सीढ़ी, जो एक उर्ध्वाधर दीवार के सहारे टिकी हुई है, के निचले सिरे की दीवार के आधार से दूरी 6 m है। दीवार पर उस बिंदु की ऊँचाई ज्ञात कीजिए, जहाँ तक सीढ़ी का ऊपरी सिरा पहुँचता है।


शहर A से शहर B तक जाने के लिए एक मार्ग शहर C से होकर इस प्रकार जाता है कि AC ⊥ CB है, AC = 2x km और CB = 2(x + 7) km है। दोनों शहरों A और B को सीधा जोड़ने के लिए, एक 26 km लंबे राजमार्ग बनाने की एक योजना है। ज्ञात कीजिए कि राजमार्ग बन जाने के बाद, शहर A से शहर B तक जाने में कितनी दूरी कम चलनी पड़ेगी। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×