Advertisements
Advertisements
प्रश्न
एक त्रिभुज ABC जिसका कोण C समकोण है, की भुजाओं CA और CB पर क्रमशः बिंदु D और E स्थित हैं। सिद्ध कीजिए कि AE2 + BD2 = AB2 + DE2 है।
उत्तर
दिया है: ABC एक त्रिभुज जिसका ∠C = 90°. इसकी भुजाओं CA एवं CB पर क्रमशः बिन्दु D और E स्थित हैं।
AE, BD एवं DE को मिलाया गया है।
चूँकि समकोण ∆ACE में, ∠ACE समकोण है
AE2 = AC2 + EC2 ….(1) [पाइथागोरस प्रमेय से]
समकोण ∆BCD में, ∠BCD समकोण है
BD2 = BC2 + DC2 …(2) पाइथागोरस प्रमेय से]
AE2 + BD2 = AC2 + BC2 + EC2 + DC2 …(3)
[समीकरण (1) + (2) से]
समकोण ∆ACB में, ∠ACB समकोण है
AB2 = AC2 + BC2 …(4) [पाइथागोरस प्रमेय से]
समकोण ∆DCE में, ∠DCE समकोण है
DE2 = DC2 + EC2 …(5)
AB2 + DE2 = AC2 + BC2 + EC2 + DC2 …(6) [समीकरण (4) + (5) से]
AE2 + BD2 = AB2 + DE2 [समीकरण (3) एवं (6) से]
इति सिद्धम्
APPEARS IN
संबंधित प्रश्न
आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि
AB2 = BC.BD
आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि
AD2 = BD.CD
सिद्ध कीजिए कि एक समचतुर्भुज की भुजाओं के वर्गों का योग उसके विकर्णों के वर्गों के योग के बराबर होता है।
आकृति में ∆ABC के अभ्यंतर में स्थित कोई बिंदु O है तथा OD ⊥ BC, OE ⊥ AC और OF ⊥ AB है। दर्शाइए कि
- OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
- AF2 + OB2 + CE2 = AE2 + CD2 + BF2
18 m ऊंचे एक ऊर्ध्वाधर खंभे के ऊपरी सिरे से एक तार का एक सिरा जुड़ा हुआ है तथा तार का दूसरा सिरा एक खूँटे से जुड़ा हुआ है। खंभे के आधार से खूँटे को कितनी दूरी पर गाड़ा जाए कि तार तना रहे जबकि तार की लंबाई 24 m है।
किसी समबाहु त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि BD = `1/3` BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है।
आकृति में ABC एक त्रिभुज है जिसमें ∠ABC < 90° हैं तथा AD ⊥ BC है। सिद्ध कीजिए कि AC2 = AB2 + BC2 – 2BC.BD है।
10 m लंबी एक सीढ़ी, जो एक उर्ध्वाधर दीवार के सहारे टिकी हुई है, के निचले सिरे की दीवार के आधार से दूरी 6 m है। दीवार पर उस बिंदु की ऊँचाई ज्ञात कीजिए, जहाँ तक सीढ़ी का ऊपरी सिरा पहुँचता है।
किसी चतुर्भुज ABCD में, ∠A + ∠D = 90° है। सिद्ध कीजिए कि AC2 + BD2 = AD2 + BC2 है।
[संकेत : AB और DC को E पर मिलने के लिए बढ़ाइए]।
एक समलंब ABCD, जिसमें AB || DC है, के विकर्णों AC और BD का प्रतिच्छेद बिंदु O है। O से होकर एक रेखाखंड PQ भुजा AB के समांतर खींचा गया है, जो AD को P और BC को Q पर मिलता है। सिद्ध कीजिए कि PO = QO है।