Advertisements
Advertisements
प्रश्न
किसी चतुर्भुज ABCD में, ∠A + ∠D = 90° है। सिद्ध कीजिए कि AC2 + BD2 = AD2 + BC2 है।
[संकेत : AB और DC को E पर मिलने के लिए बढ़ाइए]।
उत्तर
दिया गया है: चतुर्भुज ABCD, जिसमें ∠A + ∠D = 90° है।
साबित करने के लिए: AC2 + BD2 = AD2 + BC2
रचना: AB और CD को E पर मिलने के लिए बढ़ाइए।
AC और BD को भी मिलाइए।
प्रमाण: ∆AED में, ∠A + ∠D = 90° ...[दिया गया है]
∴ ∠E = 180° – (∠A + ∠D) = 90° ...[∵ त्रिभुज के कोणों का योग = 180°]
फिर, पाइथागोरस प्रमेय द्वारा,
AD2 = AE2 + DE2
∆BEC में, पाइथागोरस प्रमेय द्वारा,
BC2 = BE2 + EC2
दोनों समीकरणों को जोड़ने पर, हमें प्राप्त होता है।
AD2 + BC2 = AE2 + DE2 + BE2 + CE2 ...(i)
∆AEC में, पाइथागोरस प्रमेय द्वारा,
AC2 = AE2 + CE2
और ∆BED में, पाइथागोरस प्रमेय द्वारा,
BD2 = BE2 + DE2
दोनों समीकरणों को जोड़ने पर, हमें प्राप्त होता है।
AC2 + BD2 = AE2 + CE2 + BE2 + DE2 ...(ii)
समीकरण से (i) और (ii) से,
AC2 + BD2 = AD2 + BC2
अत: सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।
3 cm, 8 cm, 6 cm
आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि
AB2 = BC.BD
आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि
AC2 = BC.DC
ABC एक समद्विबाहु त्रिभुज है जिसका कोण C समकोण है। सिद्ध कीजिए कि AB2 = 2AC2 है।
दो खंभे जिनकी ऊँचाइयाँ 6 m और 11 m हैं तथा ये समतल भूमि पर खड़े हैं। यदि इनके पाद बिंदुओं के बीच की दूरी 12 m है तो इनके ऊपरी सिरों के बीच की दूरी ज्ञात कीजिए।
किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलंब के वर्ग के चार गुने के बराबर होता है।
आकृति में ABC एक त्रिभुज है जिसमें ∠ABC > 90° हैं तथा AD ⊥ CB है। सिद्ध कीजिए कि AC2 = AB2 + BC2 + 2 BC.BD है।
आकृति में ABC एक त्रिभुज है जिसमें ∠ABC < 90° हैं तथा AD ⊥ BC है। सिद्ध कीजिए कि AC2 = AB2 + BC2 – 2BC.BD है।
यदि ∆PQR की एक भुजा PQ पर S एक ऐसा बिंदु है कि PS = QS = RS है, तो ______।
आकृति में PQR एक समकोण त्रिभुज है, जिसका ∠Q समकोण है तथा QS ⊥ PR है। यदि PQ = 6 cm और PS = 4 cm है, तो QS, RS और QR ज्ञात कीजिए।