English

आकृति में, ABC एक त्रिभुज है जिसका ∠B समकोण है तथा BD ⊥ AC है। यदि AD = 4 cm, और CD = 5 cm है, तो BD और AB ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

आकृति में, ABC एक त्रिभुज है जिसका ∠B समकोण है तथा BD ⊥ AC है। यदि AD = 4 cm, और CD = 5 cm है, तो BD और AB ज्ञात कीजिए। 

Sum

Solution

दिया गया है, ΔABC जिसमें ∠B = 90° और BD ⊥ AC है।

साथ ही, AD = 4 cm और CD = 5 cm

ΔADB और ΔCDB में,

∠ADB = ∠CDB   ...[प्रत्येक 90° के बराबर]

और ∠BAD = ∠DBC   ...[प्रत्येक 90° – ∠C के बराबर]

∴ ΔDBA ∼ ΔDCB   ...[AAA समानता मानदंड द्वारा]

फिर, `("DB")/("DA") = ("DC")/("DB")`

⇒ DB2 = DA × DC

⇒ DB2 = 4 × 5

⇒ DB = `2sqrt(5)` cm

समकोण ∆BDC में,

BC2 = BD2 + CD2   ...[पाइथागोरस प्रमेय द्वारा]

⇒ `"BC"^2 = (2sqrt(5))^2 + (5)^2`

= 20 + 25

= 45

⇒ BC = `sqrt(45) = 3sqrt(5)`

फिर से, ΔDBA ∼ ΔDCB,

∴ `("DB")/("DC") = ("BA")/("BC")` 

⇒ `(2sqrt(5))/5 = ("BA")/(3sqrt(5))`

∴ BA = `(2sqrt(5) xx 3sqrt(5))/5` = 6 cm

अतः, BD = `2sqrt(5)` cm और AB = 6 cm।

shaalaa.com
त्रिभुजों की समरूपता के लिए कसौटियाँ
  Is there an error in this question or solution?
Chapter 6: त्रिभुज - प्रश्नावली 6.4 [Page 76]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 6 त्रिभुज
प्रश्नावली 6.4 | Q 9. | Page 76

RELATED QUESTIONS

आकृति में, ∆ODC ~ ∆OBA, ∠BOC = 125° और ∠CDO = 70° हैं। ∠DOC, ∠DCO और ∠OAB ज्ञात कीजिए।

 


आकृति में, ΔABC के शीर्षलंब AD और CE परस्पर बिंदु P पर प्रतिच्छेद करते हैं। दर्शाइए कि:

 

ΔABD ∼ ΔCBE


आकृति में, ΔABC के शीर्षलंब AD और CE परस्पर बिंदु P पर प्रतिच्छेद करते हैं। दर्शाइए कि:

ΔAEP ∼ ΔADB


एक त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि ∠ADC = ∠BAC है। दर्शाइए कि CA2 = CB.CD है।


त्रिभुजों ABC और DEF में, ∠B = ∠E, ∠F = ∠C तथा AB = 3DE है। तब दोनों त्रिभुज  ______  हैं।


एक त्रिभुज की दो भुजाओं और परिमाप में से प्रत्येक क्रमश : दूसरे त्रिभुज की संगत दोनों भुजाओं और परिमाप के तिगुने हैं। क्या दोनों त्रिभुज समरूप हैं?


आकृति में, यदि ∠D = ∠C है, तो क्या यह सत्य है कि ΔADE ~ ΔACB है? क्यों?


यदि ∆ABC ~ ∆DEF, AB = 4 cm, DE = 6 cm, EF = 9 cm और FD = 12 cm है, तो ∆ABC का परिमाप ज्ञात कीजिए। 


आकृति में, यदि DE || BC है, तो ar(ADE) और ar(DECB) का अनुपात ज्ञात कीजिए। 


आकृति में, यदि ∠ACB = ∠CDA, AC = 8 cm और AD = 3 cm है, तो BD ज्ञात कीजिए। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×