Advertisements
Advertisements
Question
सिद्ध कीजिए कि एक समकोण त्रिभुज के कर्ण पर खींचे गए अर्धवृत्त का क्षेत्रफल अन्य दो भुजाओं पर खींचे गए अर्धवृत्तों के क्षेत्रफलों के योग के बराबर होता है।
Solution
मान लीजिए ABC एक समकोण त्रिभुज है, जिसका कोण B समकोण है और AB = y, BC = x है।
भुजाओं AB, BC और AC पर क्रमशः व्यास AB, BC और AC के साथ तीन अर्धवृत्त खींचे गए हैं।
पुनः माना AB, BC और AC व्यास वाले वृत्तों का क्षेत्रफल क्रमशः A1, A2 और A3 है।
साबित करने के लिए: A3 = A1 + A2
प्रमाण: ΔABC में,
पाइथागोरस प्रमेय द्वारा,
AC2 = AB2 + BC2
⇒ AC2 = y2 + x2
⇒ AC = `sqrt(y^2 + x^2)`
हम जानते हैं कि,
त्रिज्या वाले अर्धवृत्त का क्षेत्रफल,
r = `(pir^2)/2`
∴ AC पर खींचे गए अर्धवृत्त का क्षेत्रफल,
A3 = `pi/2(("AC")/2)^2`
= `pi/2(sqrt(y^2 + x^2)/2)^2`
⇒ A3 = `(pi(y^2 + x^2))/8` ...(i)
अब, AB पर खींचे गए अर्धवृत्त का क्षेत्रफल,
A1 = `pi/2 (("AB")/2)^2`
⇒ A1 = `pi/2(y/2)^2`
⇒ A1 = `(piy^2)/8` ...(ii)
और BC पर बनाये गये अर्धवृत्त का क्षेत्रफल,
A2 = `pi/2(("BC")/2)^2`
= `pi/2(x/2)^2`
⇒ A2 = `(pix^2)/8`
समीकरण (ii) और (iii) को जोड़ने पर, हम पाते हैं।
A1 + A2 = `(piy^2)/8 + (pix^2)/8`
= `(pi(y^2 + x^2))/8`
= A3 ...[समीकरण (i) से]
⇒ A1 + A2 = A3
अतः सिद्ध हुआ।
APPEARS IN
RELATED QUESTIONS
कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।
50 cm, 80 cm, 100 cm
आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि
AC2 = BC.DC
ABC एक समद्विबाहु त्रिभुज है जिसमें AC = BC है। यदि AB2 = 2AC2 है, तो सिद्ध कीजिए कि ABC एक समकोण त्रिभुज है।
एक समबाहु त्रिभुज ABC की भुजा 2a है। उसके प्रत्येक शीर्षलंब की लंबाई ज्ञात कीजिए।
10 m लंबी एक सीढ़ी एक दीवार पर टिकाने पर भूमि से 8 m की ऊँचाई पर स्थित एक खिड़की तक पहुँचती है। दीवार के आधार से सीढ़ी के निचले सिरे की दूरी ज्ञात कीजिए।
किसी समबाहु त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि BD = `1/3` BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है।
सही उत्तर चुनकर उसका औचित्य दीजिए: ∆ABC में, AB = `6sqrt3` cm, AC = 12 cm और BC = 6 cm है। कोण B है: ______
भुजा 8 cm वाले एक समबाहु त्रिभुज का शीर्षलंब ज्ञात कीजिए।
आकृति में PQR एक समकोण त्रिभुज है, जिसका ∠Q समकोण है तथा QS ⊥ PR है। यदि PQ = 6 cm और PS = 4 cm है, तो QS, RS और QR ज्ञात कीजिए।
∆PQR में, PD ⊥ QR इस प्रकार है कि D भुजा QR पर स्थित है। यदि PQ = a, PR = b, QD = c और DR = d है, तो सिद्ध कीजिए कि (a + b)(a – b) = (c + d)(c – d) है।