Advertisements
Advertisements
प्रश्न
ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC है। भुजा BA बिंदु D तक इस प्रकार बढ़ाई गई है कि AD = AB है (देखिए आकृति)। दर्शाइए कि ∠BCD एक समकोण है।
उत्तर
AB = AC ...[दिया गया है] ...(1)
AB = AD ...[दिया गया है] ...(2)
(1) और (2) से, हमें प्राप्त होता है
AC = AD
अब, ΔABC में, हमारे पास है
∠ABC + ∠ACB + ∠BAC = 180° ...[Δ का कोण योग गुण]
⇒ 2∠ACB + ∠BAC = 180° ...(3) ...[∠ABC = ∠ACB (Δ की बराबर भुजाओं के सम्मुख कोण बराबर होते हैं)]
इसी प्रकार, ΔACD में,
∠ADC + ∠ACD + ∠CAD = 180°
⇒ 2∠ACD + ∠CAD = 180° ...(4) ...[∠ADC = ∠ACD (Δ की बराबर भुजाओं के सम्मुख कोण बराबर होते हैं)]
(3) और (4) को जोड़ने पर, हमें प्राप्त होता है
2∠ACB + ∠BAC + 2∠ACD + ∠CAD = 180° + 180°
⇒ 2[∠ACB + ∠ACD] + [∠BAC + ∠CAD] = 360°
⇒ 2∠BCD + 180° = 360° ...[∠BAC और ∠CAD एक रैखिक युग्म बनाते हैं]
⇒ 2∠BCD = 360° − 180°
⇒ 2∠BCD = 180°
⇒ ∠BCD = `(180°)/2`
अत:, ∠BCD = 90°
APPEARS IN
संबंधित प्रश्न
एक समद्विबाहु त्रिभुज ABC में जिसमें AB = AC है, ∠B और ∠C के समद्विभाजक परस्पर बिंदु O पर प्रतिच्छेद करते हैं। A और O को जोड़िए। दर्शाइए कि:
- OB = OC
- AO कोण A को समद्विभाजित करता है।
△ABC में, AD भुजा BC का लम्ब समद्विभाजक है (देखिए आकृति)। दर्शाइए △ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC है।
ABC एक समद्विबाहु त्रिभुज है, जिसमें बराबर भुजाओं AC और AB पर क्रमशः शीर्षलंब BE और CF खींचे गए हैं (देखिए आकृति)। दर्शाइए कि ये शीर्षलंब बराबर हैं।
ABC एक त्रिभुज है जिसमें AC और AB पर खींचे गए शीर्षलंब BE और CF बराबर हैं (देखिए आकृति)। दर्शाइए कि
- △ABE ≌ △ACF
- AB = AC, अर्थात् △ABC एक समद्विबाहु त्रिभुज है।
ABC और DBC समान आधार BC पर स्थित दो समद्विबाहु त्रिभुज हैं (देखिए आकृति)। दर्शाइए कि
∠ABD = ∠ACD है।
दर्शाइए कि किसी समबाहु त्रिभुज का प्रत्येक कोण 60° होता है।
D एक त्रिभुज ABC की भुजा BC पर एक बिंदु इस प्रकार स्थित है कि AD कोण BAC को समद्विभाजित करता है। तब, ______
त्रिभुजों ABC और DEF में, AB = FD तथा ∠A = ∠D है। दोनों त्रिभुज SAS अभिगृहीत से सर्वांगसम होंगे, यदि ______।
CDE एक वर्ग ABCD की भुजा CD पर बना एक समबाहु त्रिभुज है (आकृति)। दर्शाइए कि ∆ADE ≅ ∆BCE है।
एक ∆PSR की भुजा SR पर एक बिंदु Q इस प्रकार स्थित है कि PQ = PR है। सिद्ध कीजिए कि PS > PQ है।